siRNAs targeting icaD Gene of Staphylococcus aureus to Inhibit Biofilm Formation: Structural Analysis and Efficacy

Dinda Ananda Sulistina, Rian Ka Praja, Margaretha Yayu Indah Anugerahny, Hanasia Hanasia, Ysrafil Ysrafil

Abstract


Antibiotic resistance in Staphylococcus aureus infections, especially those involving biofilm formation, is a global health issue. Biofilm protects bacteria from the immune system and antibiotic treatment, making them 10 to 1000 times more resistant. The icaD gene, part of the ica operon, is crucial for biofilm synthesis by enhancing the enzymes responsible for forming the biofilm matrix. The icaD gene sequence of Staphylococcus aureus was obtained from the GenBank NCBI database with the accession code CP140612.1, with a gene sequence length of 306 bp and employed several bioinformatics methods, including siDirect for designing and evaluating effective siRNA sequences to select the most promising candidates. Additionally, siRNA Scales, MaxExpect, Duplex Fold, and siPred were employed to analyze the siRNA sequence length, secondary structure, binding energy, and efficacy predictions of siRNAs targeting the icaD gene. The study found that out of 54 siRNA candidates, siRNA22, siRNA50, and siRNA25 achieved inhibition rates of 93.69%, 92.82%, and 92.52%, respectively. These results bioinformatically demonstrated their potential to suppress the expression of the icaD gene and highlight their promise as siRNA-based antibacterial therapies to combat biofilm-related infections. The designed siRNA computationally shows potential as an innovative therapy to combat biofilm infections caused by Staphylococcus aureus.

Keywords


Staphylococcus aureus; Biofilm; icaD Gene; siRNA; Antibiotic Resistance

Full Text:

PDF

References


Angart, P., Vocelle, D., Chan, C., & Patrick Walton, S. (2013). Design of siRNA therapeutics from the molecular scale. Pharmaceuticals, 6(4), 440–468. https://doi.org/10.3390/ph6040440

Caffrey, D. R., Zhao, J., Song, Z., Schaffer, M. E., Haney, S. A., Subramanian, R. R., Seymour, A. B., & Hughes, J. D. (2011). Sirna off-target effects can be reduced at concentrations that match their individual potency. PLoS ONE, 6(7). https://doi.org/10.1371/journal.pone.0021503

Chuai, G., Ma, H., Yan, J., Chen, M., Hong, N., Xue, D., Zhou, C., Zhu, C., Chen, K., Duan, B., Gu, F., Qu, S., Huang, D., Wei, J., & Liu, Q. (2018). DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biology, 19(1), 1–18. https://doi.org/10.1186/s13059-018-1459-4

Chuai, G., Wang, Q.-L., & Liu, Q. (2017). In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends in Biotechnology, 35(1), 12–21. https://doi.org/10.1016/j.tibtech.2016.06.008

Dana, H., Mahmoodi Chalbatani, G., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O., Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., Marmari, V., Ebrahimi, M., Menati Rashno, M., Jan Abadi, S., Gharagouzlo, E., & Mar-mari, V. (2017). Molecular Mechanisms and Biological Functions of siRNA. International Journal of Biomedical Science, 13(2), 48–57. www.ijbs.org

David P. Bartel, & Sharp., P. A. (2004). RNA interference: Mechanism, biology, and therapeutic applications. Nature Reviews Molecular Cell Biology.

Filhol, O., Ciais, D., Lajaunie, C., Charbonnier, P., Foveau, N., Vert, J. P., & Vandenbrouck, Y. (2012). DSIR: Assessing the Design of Highly Potent siRNA by Testing a Set of Cancer-Relevant Target Genes. PLoS ONE, 7(10), 1–11. https://doi.org/10.1371/journal.pone.0048057

Hartawan, R., Pujianto, D. A., Dharmayanti, N. L. P. I., & Soebandrio, A. (2022). Improving siRNA design targeting nucleoprotein gene as antiviral against the Indonesian H5N1 virus. Journal of Veterinary Science, 23(2), 36814718. https://doi.org/10.4142/JVS.21174

Kajino, R., Sakamoto, S., & Ueno, Y. (2022). Synthesis, gene silencing activity, thermal stability, and serum stability of siRNA containing four (S)-5?-C-aminopropyl-2?-O-methylnucleosides (A, adenosine; U, uridine; G, guanosine; and C, cytidine). RSC Advances, 12(18), 11454–11476. https://doi.org/10.1039/d2ra00705c

Liu, Q., Zhou, H., Cui, J., Cao, Z., & Xu, Y. (2012). Reconsideration of in-silico siRNA design based on feature selection: A cross-platform data integration perspective. PLoS ONE, 7(5), 1–10. https://doi.org/10.1371/journal.pone.0037879

Lu, Z. J., Gloor, J. W., & Mathews, D. H. (2009). Improved RNA secondary structure prediction by maximizing expected pair accuracy. Rna, 15(10), 1805–1813. https://doi.org/10.1261/rna.1643609

Lybarger, S. R., & Sandkvist, M. (2004). A Hitchhiker ’ s Guide to. Science, 304(1), 1122–1123.

Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Mysara M, Garibaldi JM, E. M. (2011). MysiRNA-Designer: A Workflow for Efficient siRNA Design. PLOS ONE, 6(10).

Pan, W. J., Chen, C. W., & Chu, Y. W. (2011). SiPRED: Predicting siRNA efficacy using various characteristic methods. PLoS ONE, 6(11), 1–7. https://doi.org/10.1371/journal.pone.0027602

Peng, Q., Tang, X., Dong, W., Sun, N., & Yuan, W. (2023). A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics, 12(1), 1–21. https://doi.org/10.3390/antibiotics12010012

Perez-Mendez, M., Zárate-Segura, P., Salas-Benito, J., & Bastida-González, F. (2020). SiRNA Design to Silence the 3 ? UTR Region of Zika Virus. BioMed Research International, 2020. https://doi.org/10.1155/2020/6759346

Tran, N. N., Morrisette, T., Jorgensen, S. C. J., Orench-Benvenutti, J. M., & Kebriaei, R. (2023). Current therapies and challenges for the treatment of Staphylococcus aureus biofilm-related infections. Pharmacotherapy, 43(8), 816–832. https://doi.org/10.1002/phar.2806




DOI: https://doi.org/10.14421/biomedich.2025.142.921-926

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Dinda Ananda Sulistina, Rian Ka Praja, Margaretha Yayu Indah Anugerahny, Hanasia Hanasia, Ysrafil Ysrafil



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC