Platelet-rich plasma as an Alternative Supplement for Enhancing CD Marker Expression in Umbilical Cord-Derived Mesenchymal Stem Cells
Abstract
This study aimed to assess the effectiveness of platelet-rich plasma (PRP) and fetal bovine serum (FBS) as culture supplements for mesenchymal stem cells (MSCs) isolated from umbilical cord tissue. The study focused on the efficiency of xeno-free PRP in enhancing cell adhesion and proliferation and looked at cell surface markers for MSC characterization. Until the cells achieved 80% confluency, three repeats of FBS and PRP were added to the culture medium of mesenchymal stem cells derived from umbilical cord tissue in passage 10. Following harvesting, an assay kit for human mesenchymal stem cells was used to color the cells. Using flow cytometry, the surface markers CD73, CD90, CD105, and the negative marker CD44 were evaluated in the samples. Cells supplemented with PRP expressed more positive indicators and fewer negative markers. Whereas the results for CD90, CD105, and the negative marker were insignificant, the expression of CD73 increased significantly. PRP can enhance CD marker expression by acting as a substitute for FBS in the culture of xeno-free umbilical cord-derived MSCs.
Keywords
Full Text:
PDFReferences
Abdel Moniem, E. M., EL-Batran, M. M., Halawa, A. M., Gomaa, D. H., Eldeen, G. N., & Aly, R. M. (2019). Optimizing a serum-free/xeno-free culture medium for culturing and promoting the proliferation of human dental pulp stem cells. Stem Cell Investigation, 6. https://sci.amegroups.org/article/view/26655
Andrzejewska, A., Lukomska, B., & Janowski, M. (2019, Jul). Concise Review: Mesenchymal Stem Cells: From Roots to Boost. Stem Cells, 37(7), 855-864. https://doi.org/10.1002/stem.3016
Boivin, J., Tolsma, R., Awad, P., Kenter, K., & Li, Y. (2023). The biological use of platelet-rich plasma in skeletal muscle injury and repair. The American Journal of Sports Medicine, 51(5), 1347-1355.
Dick, M. K., Miao, J. H., & Limaiem, F. (2019). Histology, fibroblast.
Ghaneialvar, H., Soltani, L., Rahmani, H. R., Lotfi, A. S., & Soleimani, M. (2018, Jan). Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes. Indian J Clin Biochem, 33(1), 46-52. https://doi.org/10.1007/s12291-017-0641-x
Guan, Y.-T., Xie, Y., Li, D.-S., Zhu, Y.-Y., Zhang, X.-L., Feng, Y.-L., Chen, Y.-P., Xu, L.-J., Liao, P.-F., & Wang, G. (2019). Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis. Molecular Medicine Reports, 20(1), 633-639.
Hendijani, F. (2017, Apr). Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif, 50(2). https://doi.org/10.1111/cpr.12334
Hesler, M., Kohl, Y., Wagner, S., & von Briesen, H. (2019, 2019/07/01). Non-pooled Human Platelet Lysate: A Potential Serum Alternative for In Vitro Cell Culture. Alternatives to Laboratory Animals, 47(3-4), 116-127. https://doi.org/10.1177/0261192919882516
Hesler, M., Kohl, Y., Wagner, S., & von Briesen, H. (2019, Jul-Sep). Non-pooled Human Platelet Lysate: A Potential Serum Alternative for In Vitro Cell Culture. Altern Lab Anim, 47(3-4), 116-127. https://doi.org/10.1177/0261192919882516
Joo, H. S., Suh, J. H., Lee, H. J., Bang, E. S., & Lee, J. M. (2020, Jan 22). Current Knowledge and Future Perspectives on Mesenchymal Stem Cell-Derived Exosomes as a New Therapeutic Agent. Int J Mol Sci, 21(3). https://doi.org/10.3390/ijms21030727
Kandoi, S., L, P. k., Patra, B., Vidyasekar, P., Sivanesan, D., S, V., K, R., & Verma, R. S. (2018, 2018/08/20). Evaluation of platelet lysate as a substitute for FBS in explant and enzymatic isolation methods of human umbilical cord MSCs. Scientific Reports, 8(1), 12439. https://doi.org/10.1038/s41598-018-30772-4
Kaveh Baghaei1, S. M. H., Samaneh Tokhanbigli1, Ali Asadi Rad2, Hamid Assadzadeh- Aghdaei1, Abdolhamid Sharifian3, Mohammad Reza Zali1,4. (2017). Isolation, differentiation, and characterization of mesenchymal stem cells from human bone marrow. 6.
Khalisha, A., Puspitasari, R. L., Moegni, K. F., Rosadi, I., & Rosliana, I. (2018). Profil Mesenchymal Stem Cell (MSC) Pasien Klinik Hayandra Pada Media Kultur Bersuplemen Menggunakan Flow Cytometry. Jurnal Al-Azhar Indonesia Seri Sains dan Teknologi, 4(4), 195-202.
Kimura, K., Breitbach, M., Schildberg, F. A., Hesse, M., & Fleischmann, B. K. (2021, Dec). Bone marrow CD73(+) mesenchymal stem cells display increased stemness in vitro and promote fracture healing in vivo. Bone Rep, 15, 101133. https://doi.org/10.1016/j.bonr.2021.101133
Kusnanto, P., Purwanto, B., Wasita, B., & Widyaningsih, V. (2023). Phenotype and Conditioning Medium on Umbilical Cord-Mesenchymal Stem Cell (UC-MSC). The Indonesian Journal of Gastroenterology, Hepatology, and Digestive Endoscopy, 24(2), 127-131.
Lang, S., Loibl, M., & Herrmann, M. (2018). Platelet-Rich Plasma in Tissue Engineering: Hype and Hope. Eur Surg Res, 59(3-4), 265-275. https://doi.org/10.1159/000492415
Li, Q., Hou, H., Li, M., Yu, X., Zuo, H., Gao, J., Zhang, M., Li, Z., & Guo, Z. (2021). CD73+ mesenchymal stem cells ameliorate myocardial infarction by promoting angiogenesis. Frontiers in Cell and Developmental Biology, 9, 637239.
Liu, S., Yang, W., Li, Y., & Sun, C. (2023, Feb 2). Fetal bovine serum, an important factor affecting the reproducibility of cell experiments. Sci Rep, 13(1), 1942. https://doi.org/10.1038/s41598-023-29060-7
Martinez, C. E., Gomez, R., Kalergis, A. M., & Smith, P. C. (2019, May). Comparative effect of platelet-rich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clin Oral Investig, 23(5), 2455-2463. https://doi.org/10.1007/s00784-018-2637-1
McKinnon, K. M. (2018, Feb 21). Flow Cytometry: An Overview. Curr Protoc Immunol, 120, 5 1 1-5 1 11. https://doi.org/10.1002/cpim.40
Mebarki, M., Iglicki, N., Marigny, C., Abadie, C., Nicolet, C., Churlaud, G., Maheux, C., Boucher, H., Monsel, A., Menasché, P., Larghero, J., Faivre, L., & Cras, A. (2021, Nov 13). Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases. Stem Cell Res Ther, 12(1), 571. https://doi.org/10.1186/s13287-021-02637-7
Mebarki, M., Iglicki, N., Marigny, C., Abadie, C., Nicolet, C., Churlaud, G., Maheux, C., Boucher, H., Monsel, A., Menasché, P., Larghero, J., Faivre, L., & Cras, A. (2021, 2021/11/13). Development of a human umbilical cord-derived mesenchymal stromal cell-based advanced therapy medicinal product to treat immune and/or inflammatory diseases. Stem cell research & therapy, 12(1), 571. https://doi.org/10.1186/s13287-021-02637-7
Nagamura-Inoue, T., & He, H. (2014, Apr 26). Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells, 6(2), 195-202. https://doi.org/10.4252/wjsc.v6.i2.195
Nguyen, P. A., & Pham, T. A. V. (2018). Effects of platelet-rich plasma on human gingival fibroblast proliferation and migration in vitro. Journal of Applied Oral Science, 26, e20180077.
Park, S., & Jung, S. C. (2021, May 18). New Sources, Differentiation, and Therapeutic Uses of Mesenchymal Stem Cells. Int J Mol Sci, 22(10). https://doi.org/10.3390/ijms22105288
Pham, L. H., Vu, N. B., & Van Pham, P. (2019). The subpopulation of CD105 negative mesenchymal stem cells show strong immunomodulation capacity compared to CD105 positive mesenchymal stem cells. Biomedical Research and Therapy, 6(4), 3131-3140.
Plikus, M. V., Wang, X., Sinha, S., Forte, E., Thompson, S. M., Herzog, E. L., Driskell, R. R., Rosenthal, N., Biernaskie, J., & Horsley, V. (2021, Jul 22). Fibroblasts: Origins, definitions, and functions in health and disease. Cell, 184(15), 3852-3872. https://doi.org/10.1016/j.cell.2021.06.024
Poliwoda, S., Noor, N., Downs, E., Schaaf, A., Cantwell, A., Ganti, L., Kaye, A. D., Mosel, L. I., Carroll, C. B., Viswanath, O., & Urits, I. (2022). Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia), 14(3), 37498. https://doi.org/10.52965/001c.37498
Pratama, G., Khusuma, A., Lestari, S. W., Mansur, I. G., Chouw, A., Dirgantara, Y., & Sartika, C. R. (2020). Wharton's jelly derived mesenchymal stem cells: A comparison study in preterm vs. term deliveries and in FBS vs. PRP vs mesencult culture media. Journal of Global Pharma Technology, 12(6), 366-374.
Qu, C., Brohlin, M., Kingham, P. J., & Kelk, P. (2020, 2020/04/01). Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium. Cell and tissue research, 380(1), 93-105. https://doi.org/10.1007/s00441-019-03160-1
Rashid, U., Saba, E., Yousaf, A., Tareen, W. A., Sarfraz, A., Rhee, M. H., & Sandhu, M. A. (2023, Aug 17). Autologous Platelet Lysate Is an Alternative to Fetal Bovine Serum for Canine Adipose-Derived Mesenchymal Stem Cell Culture and Differentiation. Animals (Basel), 13(16). https://doi.org/10.3390/ani13162655
Rattanasuwan, K., Rassameemasmaung, S., Kiattavorncharoen, S., Sirikulsathean, A., Thorsuwan, J., & Wongsankakorn, W. (2018, Oct-Dec). Platelet-rich plasma stimulated proliferation, migration, and attachment of cultured periodontal ligament cells. Eur J Dent, 12(4), 469-474. https://doi.org/10.4103/ejd.ejd_255_17
Renesme, L., Pierro, M., Cobey, K. D., Mital, R., Nangle, K., Shorr, R., Lalu, M. M., & Thebaud, B. (2022, Mar 3). Definition and Characteristics of Mesenchymal Stromal Cells in Preclinical and Clinical Studies: A Scoping Review. Stem Cells Transl Med, 11(1), 44-54. https://doi.org/10.1093/stcltm/szab009
Rosadi, I., Afini, I., Widyastuti, T., & Sobariah, S. (2024). The Substitution Effect of Fetal Bovine Serum to Platelet-Rich Plasma on Stem Cell Proliferation. BIOSEL (Biology Science and Education): Jurnal Penelitian Science dan Pendidikan, 13(2), 160-171.
Shang, Y., Guan, H., & Zhou, F. (2021). Biological Characteristics of Umbilical Cord Mesenchymal Stem Cells and Its Therapeutic Potential for Hematological Disorders. Front Cell Dev Biol, 9, 570179. https://doi.org/10.3389/fcell.2021.570179
Sheriff, L., Alanazi, A., Ward, L. S. C., Ward, C., Munir, H., Rayes, J., Alassiri, M., Watson, S. P., Newsome, P. N., Rainger, G. E., Kalia, N., Frampton, J., McGettrick, H. M., & Nash, G. B. (2018, Jul). Origin-Specific Adhesive Interactions of Mesenchymal Stem Cells with Platelets Influence Their Behavior After Infusion. Stem Cells, 36(7), 1062-1074. https://doi.org/10.1002/stem.2811
Strauss, F. J., Nasirzade, J., Kargarpoor, Z., Stähli, A., & Gruber, R. (2020, Feb). Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies. Clin Oral Investig, 24(2), 569-584. https://doi.org/10.1007/s00784-019-03156-9
Suelzu, C. M., Conti, V., Khalidy, Y., Montagna, S., Strusi, G., Di Lecce, R., Berni, P., Basini, G., Ramoni, R., & Grolli, S. (2020, Dec 2). Xenobiotic-Free Medium Guarantees Expansion of Adipose Tissue-Derived Canine Mesenchymal Stem Cells Both in 3D Fibrin-Based Matrices and in 2D Plastic Surface Cultures. Cells, 9(12). https://doi.org/10.3390/cells9122578
Sukmawati, D., Junaidi, H., Syaidah, R., & Khaedir, Y. (2022). The benefit of platelet-rich plasma as enhancer for mesenchymal stem cell growth and differentiation into endothelial-like cell. AIP Conference Proceedings,
Suryani, D., Pawitan, J. A., Lilianty, J., Purwoko, R. Y., Liem, I. K., & Damayanti, L. (2013). Comparison of fetal bovine serum and platelet-rich plasma on human lipoaspirate-derived mesenchymal stem cell proliferation. Medical Journal of Indonesia. https://doi.org/10.13181/mji.v22i3.583
Tan, K., Zhu, H., Zhang, J., Ouyang, W., Tang, J., Zhang, Y., Qiu, L., Liu, X., Ding, Z., & Deng, X. (2019). CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Int, 2019, 8717694. https://doi.org/10.1155/2019/8717694
Tan, K., Zhu, H., Zhang, J., Ouyang, W., Tang, J., Zhang, Y., Qiu, L., Liu, X., Ding, Z., & Deng, X. (2019). CD73 expression on mesenchymal stem cells dictates the reparative properties via its anti?inflammatory activity. Stem Cells International, 2019(1), 8717694.
Taniguchi, Y., Yoshioka, T., Sugaya, H., Gosho, M., Aoto, K., Kanamori, A., & Yamazaki, M. (2019, 2019/02/02). Growth factor levels in leukocyte-poor platelet-rich plasma and correlations with donor age, gender, and platelets in the Japanese population. Journal of Experimental Orthopaedics, 6(1), 4. https://doi.org/10.1186/s40634-019-0175-7
Thaweesapphithak, S., Tantrawatpan, C., Kheolamai, P., Tantikanlayaporn, D., Roytrakul, S., & Manochantr, S. (2019, Mar 7). Human serum enhances the proliferative capacity and immunomodulatory property of MSCs derived from human placenta and umbilical cord. Stem Cell Res Ther, 10(1), 79. https://doi.org/10.1186/s13287-019-1175-3
Tonarova, P., Lochovska, K., Pytlik, R., & Hubalek Kalbacova, M. (2021). The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells International, 2021(1), 6659244. https://doi.org/https://doi.org/10.1155/2021/6659244
Trivanovic, D., Volkmann, N., Stoeckl, M., Tertel, T., Rudert, M., Giebel, B., & Herrmann, M. (2023, Apr). Enhancement of Immunosuppressive Activity of Mesenchymal Stromal Cells by Platelet-Derived Factors is Accompanied by Apoptotic Priming. Stem Cell Rev Rep, 19(3), 713-733. https://doi.org/10.1007/s12015-022-10471-4
Varaa, N., Azandeh, S., Khodabandeh, Z., & Gharravi, A. M. (2019, Nov). Wharton's Jelly Mesenchymal Stem Cell: Various Protocols for Isolation and Differentiation of Hepatocyte-Like Cells; Narrative Review. Iran J Med Sci, 44(6), 437-448. https://doi.org/10.30476/ijms.2019.44952
Wang, A. T., Feng, Y., Jia, H. H., Zhao, M., & Yu, H. (2019, Apr 26). Application of mesenchymal stem cell therapy for the treatment of osteoarthritis of the knee: A concise review. World J Stem Cells, 11(4), 222-235. https://doi.org/10.4252/wjsc.v11.i4.222
Wang, D., Liu, N., Xie, Y., Song, B., Kong, S., & Sun, X. (2020, Apr). Different culture method changing CD105 expression in amniotic fluid MSCs without affecting differentiation ability or immune function. J Cell Mol Med, 24(7), 4212-4222. https://doi.org/10.1111/jcmm.15081
Widowati, W., Noverina, R., Ayuningtyas, W., Kurniawan, D., Sari Widya Kusuma, H., Arumwardana, S., Surya Artie, D., Adhani Sholihah, I., Siwianti Handayani, R. A., Ratih Laksmitawati, D., Rinendyaputri, R., Rilianawati, R., & Faried, A. (2019). Proliferation, Characterization and Differentiation Potency of Adipose Tissue-Derived Mesenchymal Stem Cells (AT-MSCs) Cultured in Fresh Frozen and non-Fresh Frozen Plasma [Original Article]. International Journal of Molecular and Cellular Medicine, 8(4), 283-293. https://doi.org/10.22088/ijmcm.Bums.8.4.283
Wu, X., Ma, Z., Yang, Y., Mu, Y., & Wu, D. (2023, 2023/12/12). Umbilical cord mesenchymal stromal cells in serum-free defined medium display an improved safety profile. Stem cell research & therapy, 14(1), 360. https://doi.org/10.1186/s13287-023-03604-0
Zakrzewski, W., Dobrzynski, M., Szymonowicz, M., & Rybak, Z. (2019, Feb 26). Stem cells: past, present, and future. Stem Cell Res Ther, 10(1), 68. https://doi.org/10.1186/s13287-019-1165-5
Zha, K., Sun, Z., Yang, Y., Chen, M., Gao, C., Fu, L., Li, H., Sui, X., Guo, Q., & Liu, S. (2021). Recent developed strategies for enhancing Chondrogenic differentiation of MSC: impact on MSC?based therapy for cartilage regeneration. Stem Cells International, 2021(1), 8830834.
DOI: https://doi.org/10.14421/biomedich.2025.141.249-257
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Putra Agung Prianggodo, Wahyunia Likhayati Septiana, Helsy Junaidi, Sastia Winda Astuti
Biology, Medicine, & Natural Product Chemistry |