Antimicrobial Potential of Phytochemicals from Coccinia grandis Leaves: A Molecular Docking Study Against Penicillin-Binding Protein 5 of Escherichia coli and DNA Topoisomerase IV Subunit B (ParE 24kDa) of Staphylococcus aureus and Escherichia coli
Abstract
Coccinia grandis (C. grandis) leaves, traditionally used in Sri Lanka for diabetes management, also have a potential antimicrobial activity. In this study, site-specific molecular docking was performed to investigate the antimicrobial activity of phytochemicals of Coccinia grandis leaves against Penicillin-binding protein 5 (PBP 5) and DNA topoisomerase IV subunit B (ParE 24kDa) of Escherichia coli (E. coli) and DNA topoisomerase IV subunit B (ParE 24kDa) of Staphylococcus aureus (S. aureus). Penicillin was selected as the reference molecule for Penicillin-binding protein 5 and for DNA topoisomerase IV subunit B (ParE 24kDa), Novobiocin was selected as the reference molecule. The results identified Lupeol (-7.72 kcal/mol) and Beta-Sitosterol (-8.21kcal/mol) have a higher binding affinity to PBP5 of E. coli than Penicillin (-7.20 kcal/mol). Quercetin (-6.70 kcal/mol), Kaempferol (-6.95 kcal/mol), Naringenin (-7.07 kcal/mol), Isoquercetin (-6.15 kcal/mol), Lupeol (-7.87 kcal/mol), Beta-Sitosterol (-9.42 kcal/mol) and Sanguinarine (-9.07 kcal/mol) show higher binding affinity to DNA topoisomerase IV subunit B (ParE 24kDa) of S. aureus than novobiocin (-6.04 kcal/mol). As well Quercetin (-6.85 kcal/mol), Kaempferol (-6.82 kcal/mol), Naringenin (-7.23 kcal/mol), Isoquercetin (-6.20 kcal/mol), Lupeol (-7.67 kcal/mol), Beta-Sitosterol (-9.08 kcal/mol) and Sanguinarine (-9.03 kcal/mol) show higher binding affinity to DNA topoisomerase IV subunit B (ParE 24kDa) of E. coli than novobiocin (-5.76 kcal/mol). In silico pharmacokinetic and physicochemical parameter predictions were also conducted to study drug-likeness of above molecules using specialized web servers.
Keywords
Full Text:
PDFReferences
Bellon, S., Parsons, J. D., Wei, Y., Hayakawa, K., Swenson, L. L., Charifson, P. S., Lippke, J. A., Aldape, R., & Gross, C. H. (2004). Crystal Structures of Escherichia coli Topoisomerase IV ParE Subunit (24 and 43 Kilodaltons): A Single Residue Dictates Differences in Novobiocin Potency against Topoisomerase IV and DNA Gyrase. Antimicrobial Agents and Chemotherapy, 48(5), 1856–1864. https://doi.org/10.1128/AAC.48.5.1856-1864.2004
Farrukh, U., Shareef, H., & ayub Ali, syed. (2008). Antibacterial activities of Coccinia grandis L. https://www.researchgate.net/publication/230795441
Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. (2022). World Health Organization.
Kumar, K., Kumar, S. R., Dwivedi, V., Rai, A., Shukla, A. K., Shanker, K., & Nagegowda, D. A. (2015). Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Plant Science, 239, 56–66. https://doi.org/10.1016/j.plantsci.2015.07.007
Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. In Nature Reviews Microbiology (Vol. 20, Issue 5, pp. 257–269). Nature Research. https://doi.org/10.1038/s41579-021-00649-x
Lawan, H., & Tharakee, H. (2023). In silico Study on Structural Inhibition of Bacterial DNA Gyrase by Major Secondary Metabolites Found in Grape Seed Extract. Biology, Medicine, & Natural Product Chemistry, 12(2), 585–592. https://doi.org/10.14421/biomedich.2023.122.585-592
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development q settings. In Advanced Drug Delivery Reviews (Vol. 46). www.elsevier.com/locate/drugdeliv
Lu, J., Patel, S., Sharma, N., Soisson, S. M., Kishii, R., Takei, M., Fukuda, Y., Lumb, K. J., & Singh, S. B. (2014b). Structures of kibdelomycin bound to Staphylococcus aureus GyrB and ParE showed a novel U-shaped binding mode. ACS Chemical Biology, 9(9), 2023–2031. https://doi.org/10.1021/cb5001197
Nicholas, R. A., Krings, S., Tomberg, J., Nicola, G., & Davies, C. (2003). Crystal structure of wild-type penicillin-binding protein 5 from Escherichia coli: Implications for deacylation of the acyl-enzyme complex. Journal of Biological Chemistry, 278(52), 52826–52833. https://doi.org/10.1074/jbc.M310177200
Ramachandran, A., Prasath, R., & Anand, A. (2014). THE MEDICAL USES OF COCCINIA GRANDIS L. VOIGT: A REVIEW. International Journal of Pharmacognosy, 1(11), 681–690. https://doi.org/10.13040/IJPSR.0975-8232.IJP.1(11).681-90
Sauvage, E., Powell, A. J., Heilemann, J., Josephine, H. R., Charlier, P., Davies, C., & Pratt, R. F. (2008). Crystal Structures of Complexes of Bacterial dd-Peptidases with Peptidoglycan-Mimetic Ligands: The Substrate Specificity Puzzle. Journal of Molecular Biology, 381(2), 383–393. https://doi.org/10.1016/j.jmb.2008.06.012
Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
Zhang, W., Shi, Q., Meroueh, S. O., Vakulenko, S. B., & Mobashery, S. (2007). Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. Biochemistry, 46(35), 10113–10121. https://doi.org/10.1021/bi700777x
Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52. https://doi.org/10.1016/j.ejps.2010.05.013
DOI: https://doi.org/10.14421/biomedich.2025.141.541-552
Refbacks
Copyright (c) 2025 Malshan Isuranga, Dulki Nihinsa Danthanarayana
Biology, Medicine, & Natural Product Chemistry |