Genotoxic and Cytotoxic Activities of Cornhusk Extract of Zea mays and Leaf Extract of Sacharum officinarum

Emem Eyo Akpan, Martin Osita Anagboso, Imoh Imeh Johnny, Nwakaego Omonigho Ebong, Jude Efiom Okokon

Abstract


Zea mays husk and Saccharum officinarum have been used for years in ethnomedicine for their antimalarial, anti-inflammatory, antipyretic, antidiabetic, and antiphlogistic activities. The cytotoxic and genotoxic effects of Zea mays husk and Saccharum officinarum leaf extracts on the root meristem cells of Allium cepa were investigated. Onion bulbs were exposed to 2.5 mg/ml, 5mg/ml, and 10 mg/ml concentrations of the extracts for macroscopic and microscopic analysis. Tap water was used as a negative control and Methotrexate (0.1 mg/ml) was used as a positive control. There was statistically significant (p < 0.05) inhibition of root growth depending on concentration by the extracts when compared with the negative control group. All the tested extracts were observed to have cytotoxic effects on cell division in A. cepa. The extract induced chromosomal aberrations and micronuclei (MNC) formations in A. cepa root tip cells were significant (p<0.05) when compared with the control group. The extracts treatment further induced cell death, ghost cells, cells membrane damage, and binucleated cells. The Zea mays husk extract was found to exhibit higher cytotoxic and genotoxic potential than Saccharum officinarum leaf extract. These results suggest that Zea mays husk and Saccharum officinarum leaf extracts possess cytotoxic and genotoxic effects on A. cepa.

Keywords


Allium cepa; Cytotoxic; Genotoxic; Medicinal plants; Zea mays husk; Sacharum officinarum

Full Text:

PDF

References


Abo, K. A., Fred-Jaiyesimi, A. A., & Jaiyesimi, A. E. (2008). Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. Journal of Ethnopharmacology, 115(1), 67–71. https://doi.org/10.1016/j.jep.2007.09.005

Akinboro, A., & Bakare, A. A. (2007). Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. Journal of ethnopharmacology, 112(3), 470–475. https://doi.org/10.1016/j.jep.2007.04.014

Asase, A., Akwetey, G. A., & Achel, D. G. (2010). Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. Journal of ethnopharmacology, 129(3), 367–376. https://doi.org/10.1016/j.jep.2010.04.001

Albertini, R. J., Anderson, D., Douglas, G. R., Hagmar, L., Hemminki, K., Merlo, F., Natarajan, A. T., Norppa, H., Shuker, D. E., Tice, R., Waters, M. D., & Aitio, A. (2000). IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutation research, 463(2), 111–172. https://doi.org/10.1016/s1383-5742(00)00049-1

Ames, B.N (1986). “Food constituents as a source of mutagens, carcinogens and anticarcinogens,†in Genetic Toxicology of the Diet, I. Knudsen, Ed., Alan R. Liss, New York, NY, USA, pp. 55–62.

Antosiewicz D. (1990). Analysis of the cell cycle in the root meristem of Allium cepa under the influence of ledakrin. Folia histochemica et cytobiologica, 28(1-2), 79–95.

Babich, H., Segall, M. A., & Fox, K. D. (1997). “The Allium test— a simple, eukaryote genotoxicity assay,†American Biology Teacher, 59(9), 580–583.

Bakare, A.A., Mosuro, A.A., & Osibanjo, O. (2000). Effect of Simulated Leachate on Chromosomes and mitosis in roots of Allium cepa L. Journal of Environmental Biology, 21(3), 263–271.

Brito,M. T., Martinez, A., & Cadavid, N. F. C.(1990). “Mutagenic activity in regional foods and beverages from the Venezuelan Andean region,†Mutation Research, 243(2):115– 120.

Brobbey, A.A., Somuah-Asante, S., Asare-Nkansah, S., Boateng, F. O., & Ayensu, I. (2017). Preliminary phytochemical screening and scientific validation of the anti-diabetic effect of the dried husk of Zea mays L. (Corn, Poaceae) International Journal of Phytopharmacy. 7(1): 01-05.

Celik, T.A., & Aslantürk, O. S. (2007). “Cytotoxic and genotoxic effects of Lavandula stoechas aqueous extracts,†Biologia, 62(3): 292–296. doi: http://dx.doi.org/10.2478/s11756-007-0051-2

Celik, T. A., & Aslantürk, O. S. (2009). Investigation of cytotoxic and genotoxic effects of Ecballium elaterium juice based on Allium test. Methods and findings in experimental and clinical pharmacology, 31(9), 591–596. https://doi.org/10.1358/mf.2009.31.9.1434629

Celik, T.A., & Aslantürk, O. S. (2006). Anti-mitotic and antigenotoxic effects of Plantago lanceolata aqueous extract on Allium cepa root tip meristem cells,†Biologia, 61(6): 693–697. doi: http://dx.doi.org/10.2478/s11756-006-0142-5

Coutinho, I. D., Baker, J. M., Ward, J. L., Beale, M. H., Creste, S., & Cavalheiro, A. J. (2016). Metabolite Profiling of Sugarcane Genotypes and Identification of Flavonoid Glycosides and Phenolic Acids. Journal of agricultural and food chemistry, 64(21), 4198–4206. doi: https://doi.org/10.1021/acs.jafc.6b01210

Dong, J., Cai, L., Zhu, X., Huang, X., Yin, T., Fang, H. & Ding, Z. (2014). Antioxidant activities and phenolic compounds of cornhusk, corncob and Stigma Maydis. Journal of Brazilian Chemical Society, 25(11), 1956-1964. https://doi.org/10.5935/0103-5053.20140177

Edem, U.A., Okokon, J.E., Bassey, A.L., & Okokon, P.J. (2022). Antioxidative stress and hepatoprotective activities of leaf extract and fractions of Sacharum officinarum in Plasmodium berghei infected mice. Journal of Current Biomedical Research, 2(4):317-337. doi: http://dx.doi.org/10.54117/jcbr.v2i4.8

Edem, U.A., Udobang, J.A., & Okokon, J.A. (2023). Antiinflammatory and antipyretic activities of ethanol leaf extract of Saccharum officinarum in mice. European Journal Pharmaceutical and Medical Research, 10(8):29-36.

de Sá Ferreira, I. C., & Ferrão Vargas, V. M. (1999). Mutagenicity of medicinal plant extracts in Salmonella/microsome assay. Phytotherapy research: PTR, 13(5), 397–400. doi: https://doi.org/10.1002/(sici)1099-1573(199908/09)13:5<397::aid-ptr473>3.0.co;2-#

Foster, S. and Duke, J. A. (1990). Field Guide 10 Medical Plants: Eastern and Central North America. Houghton MifAin, Boston.

Gill, L. S. (1992). Ethnomedical Uses of Plants in Nigeria. Uniben Press, Benin, Nigeria, p: 249.

Gömürgen, A. N. (2005). “Cytological effect of the potassium metabisulphite and potassium nitrate food preservative on root tips of Allium cepa L.†Cytologia, 70(2):119–128. doi: http://dx.doi.org/10.1508/cytologia.70.119

Grant, W. F. (1982). Chromosome aberration assays in Allium. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutation research, 99(3), 273–291. doi: https://doi.org/10.1016/0165-1110 (82)90046-x

Grant, W. F. (1994). The present status of higher plant bioassays for the detection of environmental mutagens. Mutation research, 310(2), 175–185. doi: https://doi.org/10.1016/0027-5107(94)90112-0

Hartwell, J. L. (1971). Plants used against cancer. A survey. Lloydia, 34(4), 386–425.

Hayashi, M. (2016). The micronucleus test-most widely used in vivo genotoxicity test. Genes and environment: 38(18).

Higashimoto, M., Purintrapiban, J., Kataoka, K., Kinouchi, T., Vinitketkumnuen, U., Akimoto, S., Matsumoto, H., & Ohnishi, Y. (1993). Mutagenicity and antimutagenicity of extracts of three spices and a medicinal plant in Thailand. Mutation research, 303(3), 135–142. https://doi.org/10.1016/0165-7992(93)90026-r

Ikechukwu E, Agu P, Olumuji H, Anagboso MO, Ebong NO, Okokon JE. (2024). Evaluation of genotoxic and cytotoxic activities of three vegetables (Heinsia crinata, Justicia insularis and Lasianthera africana) Using Allium cepa test. Asian Journal of Biochemistry, Genetics and Molecular Biology. 16(4):10-20. doi: https://doi.org/10.9734/ajbgmb/2024/v16i4367

Jadhav, S. M. (2016). Protective effect of Zea mays on experimentally induced gastric ulcer in rats. Imperial Journal of Interdisciplinary Research, 2: 8.

Krishna, G., & Hayashi, M. (2000). In vivo rodent micronucleus assay: protocol, conduct and data interpretation. Mutation research, 455(1-2), 155–166. doi: https://doi.org/10.1016/s0027-5107(00)00117-2

Li, C. Y., Kim, H. W., Won, S. R., Min, H. K., Park, K. J., Park, J. Y., Ahn, M. S., & Rhee, H. I. (2008). Corn husk as a potential source of anthocyanins. Journal of agricultural and food chemistry, 56(23), 11413–11416. https://doi.org/10.1021/jf802201c

Magnus, S.P., Anagboso, M.O., Johnny, I.I., Ise, U.P., & Okokon, J.E. (2024). Evaluation of genotoxic and cytotoxic activities of leaf and seed extracts of Telfairia occidentalis. Journal of Complementary and Alternative Medicine Research, 25(3):7-16. doi: http://dx.doi.org/10.9734/JOCAMR/2024/v25i3521

Mercykutty V. C. and Stephen, J. (1980). Adriamycin induced genetic toxicity as demonstrated by Allium cepa test,†Cytologia, 45(4): 769–777.

Nagao, M., Wakabayashi, K., Fujita, Y., Tahira, T., Ochiai, M., & Sugimura, T. (1986). Mutagenic compounds in soy sauce, Chinese cabbage, coffee and herbal teas. Progress in clinical and biological research, 206, 55–62.

Nguyen, T., Fluss, L., Hodej, R., Ginther, G., and Leighton, T. (1989). “The distribution of mutagenic activity in red rose and white wines,†Mutation Research, 223:205–212.

Obidike, I. C., Amodu, B., & Emeje, M. O. (2015). Antimalarial properties of SAABMAL (®): an ethnomedicinal polyherbal formulation for the treatment of uncomplicated malaria infection in the tropics. The Indian journal of medical research, 141(2), 221–227. doi: https://doi.org/10.4103/0971-5916.155585

Ogawa, K., Takeuchi, M., & Nakamura, N. (2005). Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice. Bioscience, biotechnology, and biochemistry, 69(1), 19–25. doi: https://doi.org/10.1271/bbb.69.19

Ojewunmi O, Oshodi T, Ogundele O, Micah C & Adenekan S. (2013). Evaluation of the anti-diabetic and antioxidant activities of aqueous extracts of Morinda lucida and Saccharum officinarum leaves in alloxan-induced diabetic rats. International Journal of Biochemistry Research & Review, 3(3): 266-277. doi: http://dx.doi.org/10.9734/IJBCRR/2013/5043

Okokon, J. E., Mobley, R., Edem, U. A., Bassey, A. I., Fadayomi, I., Drijfhout, F., Horrocks, P., & Li, W. W. (2022). In vitro and in vivo antimalarial activity and chemical profiling of sugarcane leaves. Scientific reports, 12(1), 10250. doi: https://doi.org/10.1038/s41598-022-14391-8

Okokon, J. E., Antia, B. S., Mohanakrishnan, D., & Sahal, D. (2017a). Antimalarial and antiplasmodial activity of husk extract and fractions of Zea mays. Pharmaceutical Biology, 55(1), 1394–1400. doi: https://doi.org/10.1080/13880209.2017.1302966

Okokon, J.E., Davies, K., Edem, U.A., Bassey, A.L., & Udobang, J.A. (2021a). Analgesic activity of ethanol leaf extract of Sacharum officinarum. Tropical Journal of Natural Product Research, 5(6):1142-1145. doi: doi.org/10.26538/tjnpr/v5i6.27

Okokon, J. E., Ebinyo, N., & Sunday, M. (2017). Antidepressant activity of ethanol extract of Zea mays husk. Advanced Herbal Medicine, 3(4), 22-28.

Okokon, J. E., & Nyong, M. E. (2018). Antidiabetic and hypolipidemic activities of Zea mays husk extract and fractions. Journal of Herbs, Spices & Medicinal Plants, 24(2), 134–150. doi: https://doi.org/10.1080/10496475.2017.1423146

Okokon, J. E., Nyong, M. E., Essien, G. E., & Nyong, E. (2017). Nephroprotective activity of husk extract and fractions of Zea mays against alloxan-induced oxidative stress in diabetic rats. Journal of Basic Pharmacology and Toxicology, 1(3), 1-10. Retrieved from https://scigreen.com/index.php/JBPT/article/view/27

Okokon, J.E., Nyong, M.E., Essien, G.E., & Nyong, E. (2017c). Hepatoprotective activity of husk extract and fractions of Zea mays against alloxan-induced oxidative stress in diabetic rats. International Journal of Herbal Medicine, 5(4):43-50.

Okokon, J., E. Nyong, M., S. Thomas, P., O. Daniel, A., N. Enin, G., & A. Udobang, J. (2021). Antiobesity Activity of Extract, Fractions and Pure Compounds from Husk of Zea mays. Tropical Journal of Natural Product Research (TJNPR), 5(10), 1868–1875. .doi: doi.org/10.26538/tjnpr/v5i10.27

Okokon, J.E., Obot, J., & Amazu, L.U. (2018). Antiulcerogenic activity of ethanol husk extract of Zea mays. African Journal of Pharmacology and Therapeutics, 7(2): 41-45.

Okokon, J.E., Udobang, J.A., Bassey, A.L., Edem, U.A., & Agu, C.E. (2020). Hepatoprotective and nephroprotective activities of Zea mays husk extract against paracetamol-induced liver and kidneys injuries in rats. Tropical Journal of Natural Products Research, 4(3): 69-76. doi: http://dx.doi.org/10.26538/tjnpr/v4i3.2.

Okokon, J.E., Udoh, A.E., Nyong, E.E., Eno, L., & Udo, N.M. (2019a). Psychopharmacological studies on leaf extract of Saccharum officinarum. Tropical Journal of Natural Product Research, 3(2):26-30. doi: http://dx.doi.org/10.26538/tjnpr/v3i2.1

Okokon, J.E., Udobang, J.A., Obot, D., & Agu, C.E. (2019b). Nephroprotective activity of Zea mays husk extract against gentimicin- induced kidney injury in rats. Journal of Medicinal Plant Studies, 7(6): 156-160.

Okokon, J. E, Udobang, J. A., Bassey, A. L., Edem, U. A. & Agu, C. E. (2020). Hepatoprotective and nephroprotective activities of Zea mays husk extract against paracetamol-induced liver and kidneys injuries in rats. Tropical Journal of Natural Products Research. 4(3): 69-76.

Okokon, J.E., Enin, G.U., Nyong, M.E., Anyanwu BC, Dick GF. (2021c). Inhibitory effect of husk extract and fractions of Zea mays on alpha amylase and alpha glucosidase enzymes. Advance Pharmaceutical Journal. 6(6): 150-156.

Okokon, J.E., Edet, E.E., Johnny I., Anagboso, M.O., Iyanyi, U.l., & Ebong, O.O. (2024). Genotoxic and cytotoxic potentials of Mammea africana. Asian Journal of Biochemistry, Genetics and Molecular Biology, 16(5):21-30.

Owoyele, B. V., Negedu, M. N., Olaniran, S. O., Onasanwo, S. A., Oguntoye, S. O., Sanya, J. O., Oyeleke, S. A., Ibidapo, A. J., & Soladoye, A. O. (2010). Analgesic and anti-inflammatory effects of aqueous extract of Zea mays husk in male Wistar rats. Journal of medicinal food, 13(2), 343–347. doi: https://doi.org/10.1089/jmf.2008.0311

Palaksha MN, Ravishankar K and Girijasastry V. (2013). “Phytochemical screening and evaluation of in-vitro antibacterial and anthelmintic activities of Saccharum officinarum leaf extractsâ€. World J Pharmacy and Pharmaceutical Sci, 2(6):5761-5768.

Palaksha, M. N., Ravishankar, K., & Sastry, G. (2015). Biological evaluation of in vivo diuretic, and antiurolithiatic activities of ethanolic leaf extract of Saccharum officinarum. Indo Amer J Pharm Res. 5(06): 2232-2238.

Panda, B. B,. & Sahu, U. K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfothion,†Cytobios, 42(167-168): 147–155.

Rojas, E., Herrera, L. A., Sordo, M., Gonsebatt, M. E., Montero, R., Rodríguez, R., & Ostrosky-Wegman, P. (1993). Mitotic index and cell proliferation kinetics for identification of antineoplastic activity. Anti-cancer drugs, 4(6), 637–640. doi: https://doi.org/10.1097/00001813-199312000-00005

Sarkar, D., Sharma, A., & Talukder, G. (2008). Plant extracts as modulators of genotoxic effects. The Botanical Review, 62(4): 275-300.

Schimmer, O., Krüger, A., Paulini, H., & Haefele, F. (1994). An evaluation of 55 commercial plant extracts in the Ames mutagenicity test. Die Pharmazie, 49(6), 448–451.

Schulze E, Kirschner, M. (1986). “Microtubule dynamics in interphase cells,†Journal of Cell Biology, 102(3):1020–1031

Sharma A. and Sen, S. (2002). Chromosome Botany, Science, Enfield, NH, USA.

Sharma, C. B. S. R. (1983).Plant meristems as monitors of genetic toxicity of environmental chemicals,†Current Science, 52: 1000–1002.

Simmonds, N. W. (1979). Evolution of Crop Plants. Longmans, London, 339p

Singh, A., Lal, U. R., Mukhtar, H. M., Singh, P. S., Shah, G., & Dhawan, R. K. (2015). Phytochemical profile of sugarcane and its potential health aspects. Pharmacognosy reviews, 9(17), 45–54. https://doi.org/10.4103/0973-7847.156340

Sudhakar, R., Ninge Gowda, K. N., & Venu, G. (2001). Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa,†Cytologia, 66(3):235–239. doi: https://doi.org/10.1508/cytologia.66.235

Sun, J., He, X. M., Zhao, M. M., Li, L., Li, C. B., & Dong, Y. (2014). Antioxidant and nitrite-scavenging capacities of phenolic compounds from sugarcane (Saccharum officinarum L.) tops. Molecules (Basel, Switzerland), 19(9), 13147–13160. doi: https://doi.org/10.3390/molecules190913147

Swierenga, S. H., Heddle, J. A., Sigal, E. A., Gilman, J. P., Brillinger, R. L., Douglas, G. R., & Nestmann, E. R. (1991). Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures. Mutation research, 246(2), 301–322. Doi: https://doi.org/10.1016/0027-5107(91)90050-x

Türkoğlu, S. (2007). Genotoxicity of five food preservatives tested on root tips of Allium cepa L. Mutation research, 626(1-2), 4–14. https://doi.org/10.1016/j.mrgentox.2006.07.006

Udobang, J. A., Okokon, J. E., Obot, D. and Agu, C. E. (2019). Hepatoprotective activity of Zea mays husk extract against carbon tetrachloride induced liver injury in rats. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences. 5(5):82-94. doi: http://dx.doi.org/10.26479/2019.0505.08

Villa-Vasquez, S. S., Marquez-Fernandez, M. E., & Camargo-Guerrero, M. (2018). Cytotoxic and genotoxic activity of omega fatty acids in prostate cancer cells PC-3. Iatreia 31(4):351-361. doi: http://dx.doi.org/10.17533/udea.iatreia.v31n4a02

Wynder, E. L., Hall, N. E., & Polansky, M. (1983). Epidemiology of coffee and pancreatic cancer. Cancer research, 43(8), 3900–3906.

Xu, Y., & Qian, S. Y. (2014). Anti-cancer activities of ω-6 polyunsaturated fatty acids. Biomedical journal, 37(3), 112–119. https://doi.org/10.4103/2319-4170.131378.




DOI: https://doi.org/10.14421/biomedich.2024.132.531-540

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Emem Eyo Akpan, Martin Osita Anagboso, Imoh Imeh Johnny, Nwakaego O. Ebong, Jude Efiom Okokon



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC