Alkaloids Lead to Potential Inhibition of the Acyl Carrier Protein Reductase to Attenuate Tuberculosis; an in-silico Analysis

Pernia Kamran, Ahsan Ibrahim

Abstract


Tuberculosis (TB) is a contagious infection that mostly affects the lungs. Mycobacterium tuberculosis causes tuberculosis infection, leading to granulomatous lesions in affected lung tissue. It is one of the most prevalent and deadly infectious diseases among the under developed countries. This study aims to investigate the possible inhibition of the acyl carrier protein reductase for preventing tuberculosis by well-known alkaloids, thereby reducing Mycobacterium tuberculosis growth in the lungs and thereby reducing the incidence of latent and active TB. About five natural alkaloids were subjected to the molecular docking analysis, which produced favorable findings in terms of best pose and binding energies of these compounds towards the active residues of mycobacterial ACP reductase, with values ranging from -10 kcal/mol to -9.1 kcal/mol. The molecular dynamics simulation produced similar encouraging results. All of the prospective alkaloid compounds were subjected to an in-silico toxicity investigation, which determined that every compound was safe and non-toxic. Further studies may be necessary for effective formulation development employing these compounds as part of the process of drug discovery and development. The findings from this study may be helpful in the development of the novel nanoformulations using natural products for pharmacotherapy of tuberculosis infection.

Keywords


Tuberculosis; alkaloids; ACP reductase; molecular docking analysis; Mycobacterium tuberculosis

Full Text:

PDF

References


Bliven-Sizemore, E. E., Sterling, T., Shang, N., Benator, D., Schwartzman, K., Reves, R., . . . Consortium, T. T. (2015). Three months of weekly rifapentine plus isoniazid is less hepatotoxic than nine months of daily isoniazid for LTBI. The International Journal of Tuberculosis and Lung Disease, 19(9), 1039-1044.

Cahlíková, L., Vrabec, R., Pidaný, F., Pe?inová, R., Maafi, N., Mamun, A. A., . . . Blunden, G. (2021). Recent progress on biological activity of amaryllidaceae and further isoquinoline alkaloids in connection with Alzheimer’s disease. Molecules, 26(17), 5240.

Charan, J., Goyal, J. P., Reljic, T., Emmanuel, P., Patel, A., & Kumar, A. (2018). Isoniazid for the Prevention of Tuberculosis in HIV-Infected Children: A Systematic Review and Meta-Analysis. Pediatr Infect Dis J, 37(8), 773-780. doi: 10.1097/inf.0000000000001879

Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, 243-250.

Druszczy?ska, M., Kowalewicz-Kulbat, M., Fol, M., W?odarczyk, M., & Rudnicka, W. (2012). Latent M. tuberculosis infection--pathogenesis, diagnosis, treatment and prevention strategies. Pol J Microbiol, 61(1), 3-10.

Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83-89. doi: 10.1007/s40484-019-0172-y

Gong, Y., Li, S., Wang, W., Li, Y., Ma, W., & Sun, S. (2019). In vitro and in vivo activity of chelerythrine against Candida albicans and underlying mechanisms. Future Microbiology, 14(18), 1545-1557.

Grabarska, A., Wróblewska-?uczka, P., Kukula-Koch, W., ?uszczki, J. J., Kalpoutzakis, E., Adamczuk, G., . . . Stepulak, A. (2021).

Palmatine, a bioactive protoberberine alkaloid isolated from berberis cretica, inhibits the growth of human estrogen receptor-positive breast cancer cells and acts synergistically and additively with doxorubicin. Molecules, 26(20), 6253.

Huang, S.-F., Chen, M.-H., Wang, F.-D., Tsai, C.-Y., Fung, C.-P., & Su, W.-J. (2018). Efficacy of isoniazid salvage therapy for latent tuberculosis infection in patients with immune-mediated inflammatory disorders–a retrospective cohort study in Taiwan. Journal of Microbiology, Immunology and Infection, 51(6), 784-793.

Kuzmanic, A., Bowman, G. R., Juarez-Jimenez, J., Michel, J., & Gervasio, F. L. (2020). Investigating cryptic binding sites by molecular dynamics simulations. Accounts of chemical research, 53(3), 654-661.

Lamb, C., & Mauermann, M. (2021). Isoniazid-associated Peripheral Neuropathy in a “Slow Acetylator”: Need for Pharmacogenomics in Tuberculosis treatment?(4253): AAN Enterprises.

Lin, W., Huang, J., Yuan, Z., Feng, S., Xie, Y., & Ma, W. (2017). Protein kinase C inhibitor chelerythrine selectively inhibits proliferation of triple-negative breast cancer cells. Scientific Reports, 7(1), 1-12.

López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res, 42(Web Server issue), W271-276. doi: 10.1093/nar/gku339

Lopéz-Blanco, J. R., Garzón, J. I., & Chacón, P. (2011). iMod: multipurpose normal mode analysis in internal coordinates. Bioinformatics, 27(20), 2843-2850. doi: 10.1093/bioinformatics/btr497

Mafukidze, A. T., Calnan, M., & Furin, J. (2016). Peripheral neuropathy in persons with tuberculosis. Journal of clinical tuberculosis and other mycobacterial diseases, 2, 5-11.

Pease, C., Hutton, B., Yazdi, F., Wolfe, D., Hamel, C., Quach, P., . . . Alvarez, G. G. (2017). Efficacy and completion rates of rifapentine and isoniazid (3HP) compared to other treatment regimens for latent tuberculosis infection: a systematic review with network meta-analyses. BMC Infectious Diseases, 17(1), 265. doi: 10.1186/s12879-017-2377-x

Pieper, P., McHugh, E., Amaral, M., Tempone, A. G., & Anderson, E. A. (2020). Enantioselective synthesis and anti-parasitic properties of aporphine natural products. Tetrahedron, 76(2), 130814.

Plazas, E., Hagenow, S., Murillo, M. A., Stark, H., & Cuca, L. E. (2020). Isoquinoline alkaloids from the roots of Zanthoxylum rigidum as multi-target inhibitors of cholinesterase, monoamine oxidase A and A?1-42 aggregation. Bioorganic Chemistry, 98, 103722.

Pubchem. (2023). Protopine Compound Summary Pubchem.

Reddy, T. B. K., Riley, R., Wymore, F., Montgomery, P., DeCaprio, D., Engels, R., . . . Schoolnik, G. K. (2008). TB database: an integrated platform for tuberculosis research. Nucleic Acids Res, 37(suppl_1), D499-D508. doi: 10.1093/nar/gkn652

Ruiru, S., & Isamu, S. (2013). Pathophysiology of Tuberculosis. In H. M. Bassam & G. V. Mayank (Eds.), Tuberculosis (pp. Ch. 7). Rijeka: IntechOpen.

Russom, M., Berhane, A., Debesai, M., Andom, H., Tesfai, D., & Zeremariam, Z. (2019). Challenges of hepatotoxicity associated with isoniazid preventive therapy among people living with HIV in Eritrea. Adv Pharmacoepidemiol Drug Saf, 8(2), 2167-1052.2119.

Russom, M., Debesai, M., Zeregabr, M., Berhane, A., Tekeste, T., & Teklesenbet, T. (2018). Serious hepatotoxicity following use of isoniazid preventive therapy in HIV patients in Eritrea. Pharmacology Research & Perspectives, 6(4), e00423.

Sharma, S., Sharma, A., & Gupta, U. (2021). Molecular Docking studies on the Anti-fungal activity of Allium sativum (Garlic) against Mucormycosis (black fungus) by BIOVIA discovery studio visualizer 21.1. 0.0.

Son, Y., An, Y., Jung, J., Shin, S., Park, I., Gwak, J., . . . Oh, S. (2019). Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53. Phytotherapy Research, 33(6), 1689-1696.

Sreenivasmurthy, S. G., Iyaswamy, A., Krishnamoorthi, S., Senapati, S., Malampati, S., Zhu, Z., . . . Tong, B. C.-K. (2022). Protopine promotes the proteasomal degradation of pathological tau in Alzheimer's disease models via HDAC6 inhibition. Phytomedicine, 96, 153887.

Takayama, K., Wang, C., & Besra, G. S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev, 18(1), 81-101. doi: 10.1128/cmr.18.1.81-101.2005

Torres, P. H. M., Sodero, A. C. R., & Jofily, P. (2019). Key Topics in Molecular Docking for Drug Design. 20(18). doi: 10.3390/ijms20184574

Unissa, A. N., Subbian, S., Hanna, L. E., & Selvakumar, N. (2016). Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infection, Genetics and Evolution, 45, 474-492. doi: https://doi.org/10.1016/j.meegid.2016.09.004

Valipour, M., Zarghi, A., Ebrahimzadeh, M. A., & Irannejad, H. (2021). Therapeutic potential of chelerythrine as a multi-purpose adjuvant for the treatment of COVID-19. Cell Cycle, 20(22), 2321-2336.

Vilchèze, C., & Jacobs, W. R. (2019). The Isoniazid Paradigm of Killing, Resistance, and Persistence in Mycobacterium tuberculosis. Journal of Molecular Biology, 431(18), 3450-3461. doi: https://doi.org/10.1016/j.jmb.2019.02.016

Wang, B., Zhao, Y.-J., Zhao, Y.-L., Liu, Y.-P., Li, X.-N., Zhang, H., & Luo, X.-D. (2019). Exploring aporphine as anti-inflammatory and analgesic lead from Dactylicapnos scandens. Organic letters, 22(1), 257-260.

Wang, R., Zhou, J., Shi, G., Liu, Y., & Yu, D. (2020). Aporphine and phenanthrene alkaloids with antioxidant activity from the roots of Stephania tetrandra. Fitoterapia, 143, 104551.

Wang, Y., Ribeiro, J. M. L., & Tiwary, P. (2020). Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Current opinion in structural biology, 61, 139-145.

WHO. (2023). Epidemological statistics on tuberculosis.

Zhang, B., Zeng, M., Li, M., Kan, Y., Li, B., Xu, R., . . . Feng, W. (2019). Protopine protects mice against LPS-induced acute kidney injury by inhibiting apoptosis and inflammation via the TLR4 signaling pathway. Molecules, 25(1), 15.




DOI: https://doi.org/10.14421/biomedich.2023.122.441-450

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Pernia Kamran, Ahsan Ibrahim



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC