Molecular Identification of Lepidopteran Predators of Coccidae on Coffee Plants (Coffea canephora) in Sigi Regency
Abstract
This study aimed to identify the species of Lepidopteran predators that prey on soft scale insects (Coccidae) found on coffee plants in Sigi Regency using molecular techniques. DNA was extracted using the modified CTAB method (Doyle & Doyle, 1990). PCR amplification targeted the COI gene using universal primers LCO1490 and HCO2198 with a GeneAmp PCR System 9700. Visualization was done using 1% agarose gel and UV-transilluminator. Sequencing was conducted externally. Data were analyzed using BioEdit 7.2.5, BLAST, BOLD Systems, and MEGA11 software. The DNA sequence of the predator sample showed 97.91% similarity to Autoba rubra based on GenBank and 97.59% in BOLD Systems. Phylogenetic analysis confirmed a close genetic relationship with A. rubra, distinct from Eublemma. Morphological similarities with Eublemma were misleading, highlighting the accuracy of molecular identification. This study is the first to confirm the identity of a Lepidopteran predator of coffee scale insects in Indonesia using molecular techniques, revealing its close relation to Autoba rubra. The results correct previous morphological misidentifications and contribute new data on predator diversity in biological control contexts.
Keywords
Full Text:
PDFReferences
Abedeta, C., Getu, E., Seyoum, E., Hindorf, H., & Berhane, T. (2015). Coffee leaf damaging insects occurrence in the forest coffee ecosystem of southwestern Ethiopia. African Journal of Plant Science, 9(2), 75-81.
Abewoy, D. (2022). Impact of Coffee berry borer on Global Coffee Industry. International Journal of Novel Research in Engineering and Science, 9(1), 1-8.
Acuña, R., Padilla, B. E., Flórez-Ramos, C. P., Rubio, J. D., Herrera, J. C., Benavides, P., ... & Rose, J. K. (2012). Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proceedings of the national academy of sciences, 109(11), 4197-4202.
Alemu, A. (2016). Impact of antestia bug (Antestiopsis sp.) on coffee (Coffea arabica L.) production and quality. J Biol Agric Healthcare, 6(21), 18-22.
Aristizábal, L. F., Bustillo, A. E., & Arthurs, S. P. (2016). Integrated pest management of coffee berry borer: strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects, 7(1), 6.
Asfaw, E., Mendesil, E., & Mohammed, A. (2019). Altitude and coffee production systems influence extent of infestation and bean damage by the coffee berry borer. Archives of Phytopathology and Plant Protection, 52(1-2), 170-183.
Avelino, J., Ten Hoopen, G. M., & DeClerck, F. A. (2012). Ecological mechanisms for pest and disease control in coffee and cacao agroecosystems of the Neotropics. In Ecosystem services from agriculture and agroforestry (pp. 91-117). Routledge.
Barnett, A., Redd, K. S., Frusher, S. D., Stevens, J. D., & Semmens, J. M. (2010). Non-lethal method to obtain stomach samples from a large marine predator and the use of DNA analysis to improve dietary information. Journal of experimental marine biology and ecology, 393(1-2), 188-192.
Capelli, M., Dulac, C. C., Chauvin, D., Colombel, E., De Bodard, M., Morel, E., ... & Tabone, E. (2018). Development of a protocol based on molecular techniques in order to identify native predators eating the box tree moth Cydalima perspectalis, in France. Agriculture & Food. Journal of International Scientific Publications, 9, 243-254.
Casper, R. M., Jarman, S. N., Deagle, B. E., Gales, N. J., & Hindell, M. A. (2007). Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known diet. Journal of Experimental Marine Biology and Ecology, 347(1-2), 144-154.
Ceja-Navarro, J. A., Vega, F. E., Karaoz, U., Hao, Z., Jenkins, S., Lim, H. C., ... & Brodie, E. L. (2015). Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nature communications, 6(1), 7618.
Chanin, P., O’Reilly, C., Turner, P., Kerslake, L., Birks, J., & Woods, M. (2015). Insects in the diet of the hazel dormouse (Muscardinus avellanarius): a pilot study using DNA barcoding. Mammal Communications, 1, 1-7.
Cinel, S. D., & Taylor, S. J. (2019). Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) brain. Frontiers in behavioral neuroscience, 13, 36.
Clare, E. L., Fraser, E. E., Braid, H. E., Fenton, M. B., & Hebert, P. D. (2009). Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Molecular ecology, 18(11), 2532-2542.
Damanik, D. L., Novianti, S., Ifana, C. A., Firmansyah, L., Wandira, S., Fauzillah, R., ... & Fauzi, I. A. (2022). Pestisida nabati berbahan baku limbah kulit bawang merah (Allium cepa L.) untuk mengatasi hama penting pada tanaman asparagus (Asparagus officinalis). Jurnal Pusat Inovasi Masyarakat, 4(2), 151-158.
Dantas, J., Motta, I. O., Vidal, L. A., Nascimento, E. F., Bilio, J., Pupe, J. M., ... & Albuquerque, É. V. (2021). A comprehensive review of the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—A major pest for the coffee crop in Brazil and others neotropical countries. Insects, 12(12), 1130.
Dantas, J., Motta, I. O., Vidal, L. A., Nascimento, E. F., Bilio, J., Pupe, J. M., ... & Albuquerque, É. V. (2021). A comprehensive review of the coffee leaf miner Leucoptera coffeella (Lepidoptera: Lyonetiidae)—A major pest for the coffee crop in Brazil and others neotropical countries. Insects, 12(12), 1130.
Faiz, M., Hadi, M., & Rahadian, R. (2024). Kelimpahan dan Keanekaragaman Serangga OPT Nokturnal beserta Musuh Alaminya pada berbagai Macam Tanaman Sayur di Lahan Organik, Desa Batur, Kabupaten Semarang. NICHE Journal of Tropical Biology, 7(1), 1-10.
Furlong, M. J., Rowley, D. L., Murtiningsih, R., & Greenstone, M. H. (2014). Combining ecological methods and molecular gut?content analysis to investigate predation of a lepidopteran pest complex of B rassica crops. Entomologia Experimentalis et Applicata, 153(2), 128-141.
Galan, M., Pons, J. B., Tournayre, O., Pierre, É., Leuchtmann, M., Pontier, D., & Charbonnel, N. (2018). Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Molecular ecology resources, 18(3), 474-489.
Góngora, C. E., Gil, Z. N., Constantino, L. M., & Benavides, P. (2023). Sustainable strategies for the control of pests in coffee crops. Agronomy, 13(12), 2940.
Hope, P. R., Bohmann, K., Gilbert, M. T. P., Zepeda-Mendoza, M. L., Razgour, O., & Jones, G. (2014). Second generation sequencing and morphological faecal analysis reveal unexpected foraging behaviour by Myotis nattereri (Chiroptera, Vespertilionidae) in winter. Frontiers in zoology, 11, 1-15.
Hosseini, R., Schmidt, O., & Keller, M. A. (2012). Detection of predators within Brassica crops: a search for predators of diamondback moth (Plutella xylostella) and other important pests. African Journal of Agricultural Research, 7(23), 3473-3484.
Infante, F. (2018). Pest management strategies against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). Journal of agricultural and food chemistry, 66(21), 5275-5280.
Johnson, M. A., Ruiz-Diaz, C. P., Manoukis, N. C., & Verle Rodrigues, J. C. (2020). Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects, 11(12), 882.
Johnson, M. A., Ruiz-Diaz, C. P., Manoukis, N. C., & Verle Rodrigues, J. C. (2020). Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects, 11(12), 882.
Krehenwinkel, H., Kennedy, S., Pekár, S., & Gillespie, R. G. (2017). A cost?efficient and simple protocol to enrich prey DNA from extractions of predatory arthropods for large?scale gut content analysis by Illumina sequencing. Methods in Ecology and Evolution, 8(1), 126-134.
Le Pelley, R. H. (1932). On the pest status of certain coffee-feeding insects, with records of some insects newly recorded from coffee in Kenya. J. East Uganda Natural History Soc, 41, 67-77.
Liu, Y., Geng, Y., Si, M., Zhu, D., Huang, Z., Yin, H., ... & Jiang, T. (2024). Trait responses, nonconsumptive effects, and the physiological basis of Helicoverpa armigera to bat predation risk. Communications Biology, 7(1), 1436.
Luthfia, I. S., Ibrahim, Y., & Rahmat, A. (2024). Identification pests and diseases of coffee plant on Mount Puntang as a basis for integrated pest management to support sustainable development goals. Jurnal Mangifera Edu, 9(1), 46-55.
Magina, F. L., Kilambo, D. L., Maerere, A. P., & Teri, J. M. (2016). Innovative strategies for control of coffee insect pests in Tanzania: A review. Huria: Journal of the Open University of Tanzania, 22(1), 63-72.
Maharani, Y., Maryana, N., Rauf, A., & Hidayat, P. (2020). Insect parasitoid and ant of associated on aphids (Aphididae) colonies on plants in West Java. CROPSAVER-Journal of Plant Protection, 3(2), 59-67.
Mendesil, E. (2019). Insect pests of coffee and their management in Ethiopia: a review. Trends Entomol, 15, 23-34.
Mendesil, E. (2019). Insect pests of coffee and their management in Ethiopia: a review. Trends Entomol, 15, 23-34.
Moghaddam, M., Abdollahipour, M., & Fathipour, Y. (2021). Scale Insects. Polyphagous Pests of Crops, 273-309.
Nyambo, B. T., Masaba, D. M., & Hakiza, G. J. (1996). Integrated pest management of coffee for small-scale farmers in East Africa: needs and limitations. Integrated Pest Management Reviews, 1, 125-132.
Ogundeji, B. A., Olalekan-Adeniran, M. A., Orimogunje, O. A., Awoyemi, S. O., Yekini, B. A., Adewoye, G. A., & Bankole, I. A. (2019). Climate hazards and the changing world of coffee pests and diseases in Sub-Saharan Africa. Journal of Experimental Agriculture International, 41(6), 1-12.
Oliveira, J. R. D., Santana, W. D. R., Altoé, J. A., Carrion, P. A. N., Baldan, W. G., Lima, A. S., ... & Oliveira, V. D. S. (2021). Integrated Pest Management In Coffee. International Journal of Plant & Soil Science, 33(14), 9-16.
Papura, D., Roux, P., Joubard, B., Razafimbola, L., Fabreguettes, O., Delbac, L., & Rusch, A. (2020). Predation of grape berry moths by harvestmen depends on landscape composition. Biological Control, 150, 104358.
Paula, D. P., Linard, B., Crampton-Platt, A., Srivathsan, A., Timmermans, M. J., Sujii, E. R., ... & Vogler, A. P. (2016). Uncovering trophic interactions in arthropod predators through DNA shotgun-sequencing of gut contents. PLoS One, 11(9), e0161841.
Peterson, J. A., Burkness, E. C., Harwood, J. D., & Hutchison, W. D. (2018). Molecular gut-content analysis reveals high frequency of Helicoverpa zea (Lepidoptera: Noctuidae) consumption by Orius insidiosus (Hemiptera: Anthocoridae) in sweet corn. Biological Control, 121, 1-7.
Piñol, J., San Andrés, V., Clare, E. L., Mir, G., & Symondson, W. O. (2014). A pragmatic approach to the analysis of diets of generalist predators: The use of next?generation sequencing with no blocking probes. Molecular ecology resources, 14(1), 18-26.
Rytkönen, S., Vesterinen, E. J., Westerduin, C., Leviäkangas, T., Vatka, E., Mutanen, M., ... & Orell, M. (2019). From feces to data: A metabarcoding method for analyzing consumed and available prey in a bird?insect food web. Ecology and evolution, 9(1), 631-639.
Sheppard, S. K., Bell, J., Sunderland, K. D., Fenlon, J., Skervin, D., & Symondson, W. O. C. (2005). Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Molecular Ecology, 14(14), 4461-4468.
Sheppard, S. K., Henneman, M. L., Memmott, J., & Symondson, W. O. C. (2004). Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Molecular Ecology, 13(7), 2077-2088.
Shimales, T., Mendesil, E., Zewdie, B., Ayalew, B., Hylander, K., & Tack, A. J. (2023). Management intensity affects insect pests and natural pest control on Arabica coffee in its native range. Journal of Applied Ecology, 60(5), 911-922.
Susilo, F. X. (2015). Preliminary study on Eublemma sp.(Eublemminae): a lepidopteran predator of Coccus viridis (Hemiptera: Coccidae) on coffee plants in Bandarlampung, Indonesia. Jurnal Hama dan Penyakit Tumbuhan Tropika, 15(1), 10-16.
Tadesse, T., Tesfaye, B., & Abera, G. (2020). Coffee production constraints and opportunities at major growing districts of southern Ethiopia. Cogent Food & Agriculture, 6(1), 1741982.
Thomas, A. C., Nelson, B. W., Lance, M. M., Deagle, B. E., & Trites, A. W. (2017). Harbour seals target juvenile salmon of conservation concern. Canadian Journal of Fisheries and Aquatic Sciences, 74(6), 907-921.
Unruh, T. R., Miliczky, E. R., Horton, D. R., Thomsen-Archer, K., Rehfield-Ray, L., & Jones, V. P. (2016). Gut content analysis of arthropod predators of codling moth in Washington apple orchards. Biological Control, 102, 85-92.
Vega, F. E., Brown, S. M., Chen, H., Shen, E., Nair, M. B., Ceja-Navarro, J. A., ... & Pain, A. (2015). Draft genome of the most devastating insect pest of coffee worldwide: the coffee berry borer, Hypothenemus hampei. Scientific reports, 5(1), 12525.
Wegbe, K., Cilas, C., Decazy, B., Alauzet, C., & Dufour, B. (2003). Estimation of production losses caused by the coffee berry borer (Coleoptera: Scolytidae) and calculation of an economic damage threshold in Togolese coffee plots. Journal of economic entomology, 96(5), 1473-1478.
Zaidi, R. H., Jaal, Z., Hawkes, N. J., Hemingway, J., & Symondson, W. O. C. (1999). Can multiple?copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators?. Molecular Ecology, 8(12), 2081-2087.
Zeale, M. R., Butlin, R. K., Barker, G. L., Lees, D. C., & Jones, G. (2011). Taxon?specific PCR for DNA barcoding arthropod prey in bat faeces. Molecular ecology resources, 11(2), 236-244.
Zhou, X., Faktor, O., Applebaum, S. W., & Coll, M. (2000). Population structure of the pestiferous moth Helicoverpa armigera in the Eastern Mediterranean using RAPD analysis. Heredity, 85(3), 251-256.
DOI: https://doi.org/10.14421/biomedich.2025.142.983-992
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 I Made Budiarsa, Manap Trianto, Bahana Aditya Adnan
Biology, Medicine, & Natural Product Chemistry |



