Antioxidant and Anti-inflammatory Properties of Peptide Fractions of Morinda lucida and Alstonia boonei and Protective Effects against Lead-induced Toxicity in Drosophila melanogaster

Zainab Abiodun Molik, Amos Olalekan Abolaji, Omonike Oluyemisi Ogbole

Abstract


Morinda lucida and Alstonia boonei are widely used in ethnomedicine for treating and managing various ailments and have been validated for several biological activities. This study investigated the antioxidant and anti-inflammatory properties of partially purified peptide fractions of Morinda lucida (MLP) and Alstonia boonei (ABP) and their protective effect against lead (Pb)-induced toxicity on wild-type Drosophila melanogaster. Peptide fractions were partially purified using solid phase extraction and evaluated for antioxidant activities using 2,2-diphenyl-1-picrylhyhdrazyl (DPPH) radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Anti-inflammatory activity was assessed via protein denaturation and membrane stabilisation assays. Flies were treated with Pb (10 mM), peptide fractions (50 and 100 µg/10g diet), and co-treatment of Pb plus the fractions. After treatment, homogenized flies were analysed for total thiol (TSH) and non-protein thiol (NPSH) content, glutathione-S-transferase (GST) activity, nitric oxide (NO) (nitrite/nitrate) and hydroperoxide levels. The peptide fractions showed significant in vitro antioxidant and anti-inflammatory properties. Both fractions (50 and 100 µg/10g diet) maintained a balanced redox status of flies. Pb exposure reduced survival rates and increased oxidative stress markers compared to control untreated flies. Co-treatment with MLP and ABP (50 and 100 µg/10g diet) improved antioxidant enzyme activities (GST, NPSH and Total thiol) and accumulation of NO and hydroperoxide in Pb-treated flies. Therefore, the peptide fractions from M. lucida and A. boonei may be sources of bioactive agents with therapeutic potential against oxidative stress and inflammation associated with lead toxicity.

Keywords


Alstonia boonei; Drosophila melanogaster; Bioactive peptides; Lead toxicity, Morinda lucida

Full Text:

PDF

References


Abdulazeez, R., Highab, S., Onyawole, U., Jeje, M., Musa, H., Shehu, D., & Ndams, I. (2024). Co-administration of resveratrol rescued lead-induced toxicity in Drosophila melanogaster. Environmental Toxicology and Pharmacology, 109, 104470.

Abolaji, A. O., Kamdem, J. P., Lugokenski, T. H., Nascimento, T. K., Waczuk, E. P., Farombi, E. O., . . . Rocha, J. B. T. (2014). Involvement of oxidative stress in 4-vinylcyclohexene-induced toxicity in Drosophila melanogaster. Free Radical Biology and Medicine, 71, 99-108.

Adebayo, J. O., Adewole, K. E., & Krettli, A. U. (2017). Cysteine-stabilised peptide extract of Morinda lucida (Benth) leaf exhibits antimalarial activity and augments antioxidant defense system in P. berghei-infected mice. Journal of Ethnopharmacology, 207, 118-128. https://doi.org/10.1016/j.jep.2017.06.026

Adeleye, O., Ayeni, O., & Ajamu, M. (2018). Traditional and medicinal uses of Morinda lucida. Journal of Med Plants Studies, 6(2), 249-254.

Adewole, K., Attah, A., Sonibare, M., & Adebayo, J. (2018). Identification of antioxidant cysteine-stabilised peptides of Morinda lucida Benth. leaf. Indian Journal of Pharmaceutical Sciences, 80(1), 99-107.

Aebi, H. J. M. i. e. (1984). [13] Catalase in vitro. 105, 121-126.

Akano, J.-J. M., Molik, Z. A., Abolaji, A. O., & Ogbole, O. O. (2024). Mitigating aluminum chloride-induced toxicity in Drosophila melanogaster with peptide fractions from Euphorbia species. Drug and Chemical Toxicology, 1-10.

Akinmoladun, A. C., Ibukun, E., Afor, E., Akinrinlola, B., Onibon, T., Akinboboye, A., . . . Farombi, E. (2007). Chemical constituents and antioxidant activity of Alstonia boonei. African journal of biotechnology, 6(10).

Akinnawo, O. O., God’swill, N. A., & Osilesi, O. (2017). Aqueous fraction of Alstonia boonei de Wild leaves suppressed inflammatory responses in carrageenan and formaldehyde induced arthritic rats. Biomedicine and Pharmacotherapy, 86, 95-101.

Alade, G., & Attah, F. A. (2023). Pharmacognostic study and peptidomic analysis of the leaves of Nigerian Rauvolfia vomitoria Wennberg (Apocynaceae). Proceedings of the Nigerian Academy of Science, 16(1).

Asase, A., & Peterson, A. T. (2019). Predicted impacts of global climate change on the geographic distribution of an invaluable African medicinal plant resource, Alstonia boonei De Wild. Journal of Applied Research on Medicinal and Aromatic Plants, 14, 100206.

Asuzu, I., & Anaga, A. (1991). Pharmacological screening of the aqueous extract of Alstonia boonei bark.

Attah, F. A., Mbanu, A. E., Chukwudulue, U. M., Jonah, U. J., & Njinga, N. S. (2023). Ethnopharmacology, phytochemistry and a new chemotaxonomic marker in Oldenlandia affinis (Roem. & Schult.) DC. Rubiaceae. Physical Sciences Reviews, 8(11), 3939-3959.

Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R., & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 643972. https://doi.org/10.3389/fphar.2021.643972

Bamisaye, F., Odutuga, A., Minari, J., Dairo, J., Oluba, O. M., & Babalola, L. (2013). Evaluation of hypoglycemic and toxicological effects of leaf extracts of Morinda lucida in hyperglycemic albino rats. International Research Journal of Biochemistry Bioinformatics, 3(2), 37-43.

Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.

Bezerra, J., Costa, A., da Silva, M., Rocha, M., Boligon, A., da Rocha, J., . . . Kamdem, J. J. S. A. J. o. B. (2017). Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. 113, 437-442.

Bhol, N. K., Bhanjadeo, M. M., Singh, A. K., Dash, U. C., Ojha, R. R., Majhi, S., . . . Jena, A. B. (2024). The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomedicine and Pharmacotherapy, 178, 117177. https://doi.org/https://doi.org/10.1016/j.biopha.2024.117177

Burkill, H. (1985). The useful plants of West Africa. Royal Botanical Gardens, Kew, 1, p319.

Chandimali, N., Bak, S. G., Park, E. H., Lim, H.-J., Won, Y.-S., Kim, E.-K., . . . Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19. https://doi.org/10.1038/s41420-024-02278-8

Collin, M. S., Venkatraman, S. K., Vijayakumar, N., Kanimozhi, V., Arbaaz, S. M., Stacey, R. G. S., . . . Swamiappan, S. (2022). Bioaccumulation of lead (Pb) and its effects on human: A review. Journal of Hazardous Materials Advances, 7, 100094. https://doi.org/https://doi.org/10.1016/j.hazadv.2022.100094

Dah-Nouvlessounon, D., Chokki, M., Noumavo, A. D. P., Cârâc, G., Furdui, B., Sina, H., . . . Baba-Moussa, F. (2023). Ethnopharmacological Value and Biological Activities via Antioxidant and Anti-Protein Denaturation Activity of Morinda lucida Benth and Momordica charantia L. Leaves Extracts from Benin. Plants, 12(6), 1228. https://www.mdpi.com/2223-7747/12/6/1228

Dobrakowski, M., Boro?, M., Birkner, E., Kasperczyk, A., Chwali?ska, E., Lisowska, G., & Kasperczyk, S. (2017). The Effect of a Short-Term Exposure to Lead on the Levels of Essential Metal Ions, Selected Proteins Related to Them, and Oxidative Stress Parameters in Humans. Oxidative Medicine and Cellular Longevity, 2017, 8763793. https://doi.org/10.1155/2017/8763793

Dou, J., Zhou, L., Zhao, Y., Jin, W., Shen, H., & Zhang, F. (2022). Effects of long-term high-level lead exposure on the immune function of workers. Archives of Environmental & Occupational Health, 77(4), 301-308.

Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70-77. https://doi.org/10.1016/0003-9861(59)90090-6

Erel, O., & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clinical Biochemistry, 47(18), 326-332.

Fiorim, J., Simões, M. R., de Azevedo, B. F., Ribeiro, R. F., dos Santos, L., Padilha, A. S., & Vassallo, D. V. (2020). Increased endothelial nitric oxide production after low level lead exposure in rats involves activation of angiotensin II receptors and PI3K/Akt pathway. Toxicology, 443, 152557. https://doi.org/https://doi.org/10.1016/j.tox.2020.152557

Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47-58. https://doi.org/10.2478/v10102-012-0009-2

Forman, H. J., Zhang, H., & Rinna, A. (2009). Glutathione: overview of its protective roles, measurement, and biosynthesis. Molecular Aspects of Medicine, 30(1-2), 1-12.

Garza-Juárez, A., Pérez-Carrillo, E., Arredondo-Espinoza, E. U., Islas, J. F., Benítez-Chao, D. F., & Escamilla-García, E. (2023). Nutraceuticals and Their Contribution to Preventing Noncommunicable Diseases. Foods, 12(17), 3262. https://www.mdpi.com/2304-8158/12/17/3262

Gbadamosi, I., Moody, J., & Lawal, A. (2011). Phytochemical screening and proximate analysis of eight ethnobotanicals used as antimalaria remedies in Ibadan, Nigeria. J Appl Biosci, 44, 2967-2971.

Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126(1), 131-138. https://doi.org/10.1016/0003-2697(82)90118-x

Gruber, C. W. (2010). Global cyclotide adventure: a journey dedicated to the discovery of circular peptides from flowering plants. Biopolymers, 94(5), 565-572. https://doi.org/10.1002/bip.21414

Gruber, C. W., Elliott, A. G., Ireland, D. C., Delprete, P. G., Dessein, S., Goransson, U., . . . Robbrecht, E. (2008). Distribution and evolution of circular miniproteins in flowering plants. The Plant Cell, 20(9), 2471-2483.

Gurer, H., & Ercal, N. (2000). Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology and Medicine, 29(10), 927-945. https://doi.org/https://doi.org/10.1016/S0891-5849(00)00413-5

Habig, W. H., & Jakoby, W. B. (1981). Assays for differentiation of glutathione S-Transferases. In Methods in Enzymology (Vol. 77, pp. 398-405). Elsevier.

Harshitha, P., Bose, K., & Dsouza, H. S. (2024). Influence of lead-induced toxicity on the inflammatory cytokines. Toxicology, 503, 153771. https://doi.org/https://doi.org/10.1016/j.tox.2024.153771

Hernandez, J.-F., Gagnon, J., Chiche, L., Nguyen, T. M., Andrieu, J.-P., Heitz, A., . . . Le Nguyen, D. (2000). Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry, 39(19), 5722-5730.

Jollow, D., Mitchell, J., Zampaglione, N., & Gillette, J. J. P. (1974). Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. 11(3), 151-169.

Koehbach, J., Attah, A. F., Berger, A., Hellinger, R., Kutchan, T. M., Carpenter, E. J., . . . Wong, G. K. S. (2013). Cyclotide discovery in Gentianales revisited—identification and characterization of cyclic cystine?knot peptides and their phylogenetic distribution in Rubiaceae plants. Peptide Science, 100(5), 438-452.

Kumar, A., Dogra, S., & Prakash, A. (2009). Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behavioural Brain Research, 205(2), 384-390.

Kundi, H., Ates, I., Kiziltunc, E., Cetin, M., Cicekcioglu, H., Neselioglu, S., . . . Ornek, E. (2015). A novel oxidative stress marker in acute myocardial infarction; thiol/disulphide homeostasis. The American journal of emergency medicine, 33(11), 1567-1571.

Kwofie, K. D., Tung, N. H., Suzuki-Ohashi, M., Amoa-Bosompem, M., Adegle, R., Sakyiamah, M. M., . . . Atchoglo, P. (2016). Antitrypanosomal activities and mechanisms of action of novel tetracyclic iridoids from Morinda lucida Benth. Antimicrobial Agents and Chemotherapy, 60(6), 3283-3290.

Libby, P. (2007). Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutrition Reviews, 65(suppl_3), S140-S146.

Liu, W., Chen, X., Li, H., Zhang, J., An, J., & Liu, X. (2022). Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods, 11(15). https://doi.org/10.3390/foods11152361

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275. https://www.ncbi.nlm.nih.gov/pubmed/14907713

Lushchak, V. I. (2012). Glutathione homeostasis and functions: potential targets for medical interventions. Journal of Amino Acids, 2012, 736837. https://doi.org/10.1155/2012/736837

Majekodunmi, S., Adegoke, O., & Odeku, O. (2008). Formulation of the extract of the stem bark of Alstonia boonei as tablet dosage form. Tropical Journal of Pharmaceutical Research, 7(2), 987-994.

Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C. d., Coube, C. S., & Leitão, S. G. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15(2), 127-130.

Mounnissamy, V. M., Kavimani, S., Balu, V., & Quine, S. D. (2007). Evaluation of Anti-inflammatory and Membrane stabilizing property of Ethanol Extract of Cansjera rheedii J. Gmelin (Opiliaceae). Iranian Journal of Pharmacology and Therapeutics, 6(2), 235-230.

Mumtaz, S., Ali, S., Khan, R., Shakir, H. A., Tahir, H. M., Mumtaz, S., & Andleeb, S. (2020). Therapeutic role of garlic and vitamins C and E against toxicity induced by lead on various organs. Environmental Science and Pollution Research, 27, 8953-8964.

Nguyen, G. K. T., Lian, Y., Pang, E. W. H., Nguyen, P. Q. T., Tran, T. D., & Tam, J. P. (2013). Discovery of linear cyclotides in monocot plant Panicum laxum of Poaceae family provides new insights into evolution and distribution of cyclotides in plants. Journal of Biological Chemistry, 288(5), 3370-3380.

Nguyen, G. K. T., Zhang, S., Nguyen, N. T. K., Nguyen, P. Q. T., Chiu, M. S., Hardjojo, A., & Tam, J. P. (2011). Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. Journal of Biological Chemistry, 286(27), 24275-24287.

Ni, Z., Hou, S., Barton, C. H., & Vaziri, N. D. (2004). Lead exposure raises superoxide and hydrogen peroxide in human endothelial and vascular smooth muscle cells. Kidney International, 66(6), 2329-2336. https://doi.org/https://doi.org/10.1111/j.1523-1755.2004.66032.x

Nwanna, E. (2021). Protective effect of alkaloid-rich extract of Brimstone tree (Morinda lucida) on Neurotoxicity in the fruit-fly (Drosophila melanogaster) model. African Journal of Biomedical Research, 24(2), 257-263.

Ogbole, O. O., Akinleye, T. E., Nkumah, A. O., Awogun, A. O., Attah, A. F., Adewumi, M. O., & Adeniji, A. J. (2021). In vitro antiviral activity of peptide-rich extracts from seven Nigerian plants against three non-polio enterovirus species C serotypes. Virology Journal, 18, 1-7.

Okagu, I. U., & Udenigwe, C. C. (2022). Transepithelial transport and cellular mechanisms of food-derived antioxidant peptides. Heliyon, 8(10), e10861. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10861

Olajide, O. A., Awe, S. O., Makinde, J. M., Ekhelar, A. I., Olusola, A., Morebise, O., & Okpako, D. T. (2000). Studies on the anti-inflammatory, antipyretic and analgesic properties of Alstonia boonei stem bark. Journal of Ethnopharmacology, 71(1-2), 179-186.

Olakkaran, S., Antony, A., Kizhakke Purayil, A., Tilagul Kumbar, S., & Hunasanahally Puttaswamygowda, G. (2018). Lead modulated Heme synthesis inducing oxidative stress mediated Genotoxicity in Drosophila melanogaster. Science of the Total Environment, 634, 628-639. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.04.004

Opie, E. L. (1962). On the relation of necrosis and inflammation to denaturation of proteins. The Journal of experimental medicine, 115(3), 597.

Opoku, F., & Akoto, O. (2015). Antimicrobial and phytochemical properties of Alstonia boonei extracts. Organic Chemistry: Current Research, 4(1), 137.

Osunbor, J., & Orobor, A. (2023). Investigation of Some Oxidative Stress Parameters in Drosophila Melanogaster Exposed to Lead and Treated with Picralima Nitida. Journal of Applied Sciences and Environmental Management, 27(5), 905-910.

Oyebode, O. A., Erukainure, O. L., Ibeji, C. U., Koorbanally, N. A., & Islam, M. S. (2019). Phytochemical constituents, antioxidant and antidiabetic activities of different extracts of the leaves, stem and root barks of Alstonia boonei: an in vitro and in silico study. Botany letters, 166(4), 444-456.

Padmanabhan, P., & Jangle, S. (2012). Evaluation of in-vitro anti-inflammatory activity of herbal preparation, a combination of four medicinal plants. International journal of basic and applied medical sciences, 2(1), 109-116.

Patra, R. C., Rautray, A. K., & Swarup, D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, 457327. https://doi.org/10.4061/2011/457327

Plan, M. R. R., Göransson, U., Clark, R. J., Daly, N. L., Colgrave, M. L., & Craik, D. J. (2007). The cyclotide fingerprint in Oldenlandia affinis: elucidation of chemically modified, linear and novel macrocyclic peptides. ChemBioChem, 8(9), 1001-1011.

Rand, M. D., Kearney, A. L., Dao, J., & Clason, T. (2010). Permeabilization of Drosophila embryos for introduction of small molecules. Insect Biochemistry and Molecular Biology, 40(11), 792-804. https://doi.org/10.1016/j.ibmb.2010.07.007

Rees, N., & Fuller, R. (2020). The toxic truth: children’s exposure to lead pollution undermines a generation of future potential. Unicef.

Rinsky, J. L., Higgins, S., Angelon-Gaetz, K., Hogan, D., Lauffer, P., Davies, M., . . . MacFarquhar, J. (2018). Occupational and take-home lead exposure among lead oxide manufacturing employees, North Carolina, 2016. Public Health Reports, 133(6), 700-706.

Roy, A., Das, S., Chatterjee, I., Roy, S., & Chakraborty, R. (2022). Anti-inflammatory Effects of Different Dietary Antioxidants. In H. M. Ekiert, K. G. Ramawat, & J. Arora (Eds.), Plant Antioxidants and Health (pp. 573-597). Springer International Publishing. https://doi.org/10.1007/978-3-030-78160-6_20

Saalu, L. C. (2016). Nigerian folklore medicinal plants with potential antifertility activity in males: a scientific appraisal.

Sadique, J., Al-Rqobah, W., Bughaith, M., & El-Gindy, A. (1989). The bio-activity of certain medicinal plants on the stabilization of RBC membrane system.

Sánchez, A., & Vázquez, A. (2017). Bioactive peptides: A review. Food quality and safety, 1(1), 29-46.

?ciskalska, M., & Milnerowicz, H. (2020). The role of GST? isoform in the cells signalling and anticancer therapy. European Review for Medical and Pharmacological Sciences, 24(16).

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., . . . Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases [Review]. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00694

Sharma, J., Al-Omran, A., & Parvathy, S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15, 252-259.

Sheweita, S., Mashaly, S., Newairy, A., Abdou, H., & Eweda, S. (2016). Changes in oxidative stress and antioxidant enzyme activities in streptozotocin?induced diabetes mellitus in rats: Role of Alhagi maurorum extracts. Oxidative Medicine and Cellular Longevity, 2016(1), 5264064.

Shi, H., Pei, L., Gu, S., Zhu, S., Wang, Y., Zhang, Y., & Li, B. (2012). Glutathione S-transferase (GST) genes in the red flour beetle, Tribolium castaneum, and comparative analysis with five additional insects. Genomics, 100(5), 327-335. https://doi.org/https://doi.org/10.1016/j.ygeno.2012.07.010

Shilpa, O., Anupama, K. P., Antony, A., & Gurushankara, H. P. (2021). Lead (Pb) induced Oxidative Stress as a Mechanism to Cause Neurotoxicity in Drosophila melanogaster. Toxicology, 462, 152959. https://doi.org/10.1016/j.tox.2021.152959

Siddique, H. R., Gupta, S. C., Dhawan, A., Murthy, R. C., Saxena, D. K., & Chowdhuri, D. K. (2005). Genotoxicity of industrial solid waste leachates in Drosophila melanogaster. Environmental and Molecular Mutagenesis, 46(3), 189-197. https://doi.org/10.1002/em.20149

Umapathy, E., Ndebia, E., Meeme, A., Adam, B., Menziwa, P., Nkeh-Chungag, B., & Iputo, J. (2010). An experimental evaluation of Albuca setosa aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J Med Plants Res, 4(9), 789-795.

Venkareddy, L. K. (2015). Potential of casein as a nutrient intervention to alleviate lead (Pb) acetate-mediated oxidative stress and neurotoxicity: first evidence in Drosophila melanogaster. Neurotoxicology, 48, 142-151.

Virgolini, M. B., & Aschner, M. (2021). Molecular mechanisms of Lead neurotoxicity. Adv Neurotoxicol, 5, 159-213. https://doi.org/10.1016/bs.ant.2020.11.002

Wang, H. l., Sun, Z. o., Rehman, R. u., Wang, H., Wang, Y. f., & Wang, H. (2017). Rosemary extract?mediated lifespan extension and attenuated oxidative damage in drosophila melanogaster fed on high?fat diet. Journal of Food Science, 82(4), 1006-1011.

Wolff, S. P. (1994). Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods in Enzymology, 233, 182-189.

Xie, Z., Huang, J., Xu, X., & Jin, Z. (2008). Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chemistry, 111(2), 370-376. https://doi.org/https://doi.org/10.1016/j.foodchem.2008.03.078

Xu, B., Dong, Q., Yu, C., Chen, H., Zhao, Y., Zhang, B., . . . Chen, M. (2024). Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants, 13(4), 479. https://www.mdpi.com/2076-3921/13/4/479

Yan, L. D., Rouzier, V., Pierre, J. L., Lee, M. H., Muntner, P., Parsons, P. J., . . . Pierre, G. (2022). High lead exposure associated with higher blood pressure in Haiti: a warning sign for low-income countries. Hypertension, 79(1), 283-290.

Zemolin, A. P., Cruz, L. C., Paula, M. T., Pereira, B. K., Albuquerque, M. P., Victoria, F. C., . . . Franco, J. L. (2014). Toxicity induced by Prasiola crispa to fruit fly Drosophila melanogaster and cockroach Nauphoeta cinerea: evidence for bioinsecticide action. Journal of Toxicology and Environmental Health. Part A, 77(1-3), 115-124. https://doi.org/10.1080/15287394.2014.866927

Zhang, H.-Y., Li, H.-Z., Zhang, T.-W., & Zhang, Z.-J. (2022). Research progress on the mechanism of antioxidant peptides.

Zhang, J., Li, W., Ying, Z., Zhao, D., Yi, G., Li, H., & Liu, X. (2020). Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food & Nutrition Research, 64.

Zheng, K., Zeng, Z., Tian, Q., Huang, J., Zhong, Q., & Huo, X. (2023). Epidemiological evidence for the effect of environmental heavy metal exposure on the immune system in children. Science of the Total Environment, 868, 161691.

Zhu, Z., Xu, Z., Li, Y., Fan, Y., Zhou, Y., Song, K., & Meng, L. (2024). Antioxidant Function and Application of Plant-Derived Peptides. Antioxidants, 13(10), 1203. https://www.mdpi.com/2076-3921/13/10/1203




DOI: https://doi.org/10.14421/biomedich.2025.142.993-1007

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Zainab Abiodun Molik, Amos Olalekan Abolaji, Omonike Oluyemisi Ogbole



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC