Identification of Potential Antimalarial Compound(s) from Alkaloid, Flavonoids and Phenolics Rich Extracts of Piliostigma reticulatum Leaf

Abdulhafiz Lamiya, Adamu Jibril Alhassan, Maryam Abdulkadir Dangambo, Hauwa Ahmed Zailani

Abstract


Malaria is a deadly vector born disease caused by Plasmodium spp with increasing morbidity and mortality in sub-Saharan Africa. Ethnobotanical studies and phytochemical screening remains the mainstay in the hunt of bioactive secondary metabolites from natural sources needed to confront the growing challenges faced by available drugs used in the treatment of many infectious diseases malaria inclusive. This study aimed at identifying potential antimalarial compound(s) in some Piliostigma reticulatum extracts. In vivo technique was used to assay for antimalarial activities of P. reticulatum extracts and spectroscopic technique was used to characterize compounds present in the extract. Top hit compound against some Plasmodium spp targets were identified using in silico technique. In vivo study revealed phenolic rich extract to exhibit significant antimalarial activity (P<0.05) compared to other extracts and twenty five compounds were identified in the extract spectroscopically. Molecular docking of the compounds against some Plasmodium falciparum targets (PMII, HAP, FP-2 and PfENR) revealed ethylene brassylate as the top hit compound that inhibited PMII, FP-2 and PfENR with binding affinity of -7.3, -7 and -6.5Kcal/mol respectively, whereas 2-hexadecanol was the top hit for HAP with binding affinity of -6.4Kcal/mol. In silico ADMET analysis of the top hits revealed that they both possess drug-like property, metabolizable and relatively safe. This finding gives credence to the use of the plant in malaria treatment and identified two compounds Ethylene brassylate and 2-hexadecanol as promising antimalarial drug candidates which can be harnessed for discovery of novel antimalarial drug.


Keywords


Antimalarial compounds; Piliostigma reticulatum; Molecular docking; in silico analysis; Antimalarial activity

Full Text:

PDF

References


Abdulkadir, S. S., Jatau, A. I., Abdussalam, U. S., & Bichi, L. A. (2022). In vivo antiplasmodial activity of the methanol leaf extract of Piliostigma reticulatum ( Dc .) Hochst ( Fabaceae ). Bulletin of the National Research Centre. https://doi.org/10.1186/s42269-022-00910-0

Abdulsalami, H., Daudu, Y. O. A., Adabara, N. U., & Hamzah, R. U. (2022). Antisalmonellal Activity and GC-MS Analysis of Piliostigma thonningii leaf extract. 2(2), 1–9.

Afolayan, F. I. D., & Oladokun, S. E. (2024). In silico antiplasmodial effects of phytocompounds derived from Andrographis paniculata on validated drug targets of different stages of Plasmodium falciparum. 5(2), 1–11. https://doi.org/10.53388/IDR2024006.Executive

Ahsin, A., Kurbanova, M., Ahmad, S., Qamar, A., Ashfaq, M., Tahir, M. N., Dege, N., ?ahin, O., Abuelizz, H. A., Al-Salahi, R., & El Bakri, Y. (2025). Synthesis, structure, supramolecular assembly inspection by Hirshfeld surface analysis, DFT study and molecular docking inspection of 4,5-bis(2-chlorophenyl)-8a-phenylhexahydropyrimido[4,5-d]pyrimidine-2,7(1H,3H)-dithione. Journal of Molecular Structure, 1319. https://doi.org/10.1016/j.molstruc.2024.139580

Alshahrani, M. Y., Zaid, A., Suliman, M., Bibi, S., Muhammad, S., & urRehman, S. (2025). In-silico discovery of efficient second-generation drug derivatives with enhanced antihistamine potency and selectivity. Computational Biology and Chemistry, 115. https://doi.org/10.1016/j.compbiolchem.2024.108340

Artasasta, M. A., Djamaludin, H., Listyorini, D., Putra, W. E., Eviana, D., & Putri, K. (2025). Molecular Docking and ADMET Analysis of Bioactive Compounds from Aspergillus nomius NC06 Against Plasmepsin Protein : Antimalarial Activity. 511–517. https://doi.org/10.17957/IJAB/15.2230

Boualam, K., Ndiaye, B., Harhar, H., Tabyaoui, M., Ayessou, N., & Taghzouti, K. (2021). Study of the Phytochemical Composition , the Antioxidant and the Anti-Inflammatory Effects of Two Sub-Saharan Plants : Piliostigma reticulatum and Piliostigma thonningii. 2021.

Chaurasia, S., & Pandey, A. (2022). A Systematic In Silico Investigation of Phytochemicals from Artocarpus Species against Plasmodium falciparum Inhibitors.

Cheaveau, J., Marasinghe, D., Akakpo, S., Deardon, R., Naugler, C., Chin, A., & Pillai, D. R. (2019). The Impact of Malaria on Liver Enzymes : A Retrospective Cohort Study ( 2010 – 2017 ). 1–8. https://doi.org/10.1093/ofid/ofz234

Enechi, O. C., Okpe, C. C., Ibe, G. N., Omeje, K. O., & Okechukwu, P. C. U. (2016). Effect of Buchholzia coriacea Methanol Extract on Haematological Indices and Liver Function Parameters in Plasmodium berghei -Infected Mice. 16(1), 57–66. https://doi.org/10.5829/idosi.gv.2016.16.01.10244

Erhirhie, E. O., Ikegbune, C., Okeke, A. I., Onwuzuligbo, C. C., Madubuogwu, N. U., & Chukwudulue, U. M. (2021). Antimalarial herbal drugs : a review of their interactions with conventional antimalarial drugs.

Fayanju, b., akinmoladun, a. C., & olaleye, m. T. (2022). Toxicological evaluation of the methanolic leaf extract of piliostigma reticulatum ( dc .) Hochst in male wistar rats. 03(01), 3380–3384.

Harborne, J. B. (1997). Phytochemical methodsitle. Chapman and Hall ltd., London.

Harish, K. K., Khamees, H. A., Venkatesha, K., Nagaraja, O., & Madegowda, M. (2025). The pivotal role of the carbonyl group in methoxy chalcones: comprehensive analyses of the structure and computational insights into binding affinity towards monoamine oxidase enzymes. Molecular Systems Design and Engineering. https://doi.org/10.1039/d4me00135d

Iyabode, S., Ahmed, A., Ishola, A., & Bewaji, C. O. (2023). Antimalarial Activities of a Therapeutic Combination of Azadirachta indica , Mangifera indica and Morinda lucida Leaves : A Molecular View of its Activity on Plasmodium falciparum Proteins. 0123456789.

Jain, P. K., Soni, A., Jain, P., & Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS , FTIR and GC / MS technique Phytochemical analysis of Mentha spicata plant extract using UV-VIS , FTIR and GC / MS technique. March.

Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant Secondary Metabolites: Biosynthesis, Classification, Function and Pharmacological Properties. 2, 377–392.

Kalaichelvi, K. (2017). Screening of phytoconstituents , UV-VIS Spectrum and FTIR analysis of Micrococca mercurialis ( L .) Benth. 5(6), 40–44.

Klebe, G. (2013). Optimization of Lead Structures. Drug Design, 153–172. https://doi.org/10.1007/978-3-642-17907-5_8

Kumar, T., Shrivas, K., Kurrey, R., Upadhyay, S., Jangde, R., & Chauhan, R. (2020). Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Phytochemical screening and determination of phenolics and fl avonoids in Dillenia pentagyna using UV – vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 242, 118717. https://doi.org/10.1016/j.saa.2020.118717

Kwaji, A., Bassi, P. U., Aoill, M., Nneji, C. M., & Ademowo, G. (2016). Preliminary studies on Piliostigma thonningii Schum leaf extract : Phytochemical screening and in vitro antimalarial activity. 2016.

Lorke, D. (1983). A new approach to practical acute toxicity testing. Archives of Toxicology, 54(4), 275–287. https://doi.org/10.1007/BF01234480

Madara, A. A., Ajayi, J. A., Salawu, O. A., & Tijani, A. Y. (2010). Anti-malarial activity of ethanolic leaf extract of Piliostigma thonningii Schum . ( Caesalpiniacea ) in mice infected with Plasmodium berghei berghei. 9(23), 3475–3480.

Majewski, M., Ruiz-Carmona, S., & Barril, X. (2019). An investigation of structural stability in protein-ligand complexes reveals the balance between order and disorder. Communications Chemistry, 2(1). https://doi.org/10.1038/s42004-019-0205-5

Mawson, A. R., & Mawson, A. R. (2016). The pathogenesis of malaria : a new perspective The pathogenesis of malaria : a new perspective. 7724(December). https://doi.org/10.1179/2047773213Y.0000000084

Medimagh, M., Issaoui, N., Gatfaoui, S., Kazachenko, A. S., Al-Dossary, O. M., Kumar, N., Marouani, H., & Bousiakoug, L. G. (2023). Investigations on the non-covalent interactions, drug-likeness, molecular docking and chemical properties of 1,1,4,7,7- pentamethyldiethylenetriammonium trinitrate by density-functional theory. Journal of King Saud University - Science, 35(4). https://doi.org/10.1016/j.jksus.2023.102645

Mourya, A. S., & Pandey, R. K. (2024). A Study on Factors Attributed to Failure of Pharmaceutical Products. 2(2), 12–21.

Nhlapho, S., & Munien, I. (2024). Sciences of Pharmacy Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. 5(5).

Nureye, D., Salahaddin, M., & Zewudie, A. (2020). Current Medicines for Malaria Including Resistance Issues. 3–10. https://doi.org/10.4103/jpp.JPP

Oderinde, O., Onu, A., Shagari, A., & Olaitan, O. (2022). Effect of Cymbopogon citratus and Piliostigma reticulatum Aqueous Leaf Extracts on Rat Liver Function and In vitro Schizont Maturation Inhibition. Nigerian Journal of Basic and Applied Sciences, 29(2), 1–8. https://doi.org/10.4314/njbas.v29i2.1

Odutuga, A.A., Ukpanukpong, R.U. and Uyabeme, R. . (2016). Biochemical and Histological Studies on the effects of Lonart Ds on Plasmodium berghei Infected Mice. JABU Journal of Science and Technology, 2(4), 69–77.

Oladeji, O. S., Oluyori, A. P., Bankole, D. T., & Afolabi, T. Y. (2020). Natural Products as Sources of Antimalarial Drugs : Ethnobotanical and Ethnopharmacological Studies. 2020. https://doi.org/10.1155/2020/7076139

Pandey, S. K., Verma, S., Upreti, S., Mishra, A., Yadav, N., & Dwivedi-Agnihotri, H. (2024). Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Current Drug Metabolism, 25(4), 235–247.https://doi.org/10.2174/0113892002312369240703102215

Peters, W. (1965). Drug resistance in Plasmodium berghei Vincke and Lips, 1948. III. Multiple drug resistance. Experimental Parasitology, 17(1), 97–102.

R.K., U. (2014). Drug delivery systems, CNS protection, and the blood brain barrier. BioMed Research International, 2014.

Raja, B., Sivakumar, A., Mekata, T., Radhakrishnan, V., Asely, A. M. El, Abdelsalam, M., & Raja, S. (2025). Research Article Bis ( Oxy )] - , ( 5 . Beta ) - as an Antiviral Candidate Against White Spot Syndrome Virus ( WSSV ): Molecular Docking and Simulation Approach. 2025. https://doi.org/10.1155/are/8855914

Shanshan, L., Yuan, X., Qiancheng, S., Xian, L., Jing, L., Yadong, C., Tao, L., Cheng, L., Xiaomin, L., Mingyue, Z., & Hualiang, J. (2013). Non-Covalent Interactions with Aromatic Rings: Current Understanding and Implications for Rational Drug Design. Current Pharmaceutical Design, 19(36), 6522–6533. https://doi.org/10.2174/13816128113199990440

Shekarau, E., Uzoanya, M., Ogbulafor, N., Ntadom, G., Ijezie, S. N., Uzoanya, M. I., Seye, B., Fashanu, C., Eze, N., Nwidae, L., Mokuolu, O., Nwokenna, U., Nglass, I., Ishola-Gbenla, O., Okouzi, M., Fagbola, M., Oresanya, O., Getachew, D., Chukwumerije, J., … Rietveld, H. (2024). Severe malaria intervention status in Nigeria: workshop meeting report. Malaria Journal, 23(1). https://doi.org/10.1186/s12936-024-05001-1

Shi, Y. H., Shen, J. X., Tao, Y., Xia, Y. L., Zhang, Z. B., Fu, Y. X., Zhang, K. Q., & Liu, S. Q. (2025). Dissecting the Binding Affinity of Anti-SARS-CoV-2 Compounds to Human Transmembrane Protease, Serine 2: A Computational Study. International Journal of Molecular Sciences, 26(2). https://doi.org/10.3390/ijms26020587

Shibi, I. G., Aswathy, L., Jishaa, R. S., Masand, V. H., & Gajbhiyec, J. M. (2016). Virtual Screening Techniques to Probe the Antimalarial Activity of some Traditionally Used Phytochemicals. December. https://doi.org/10.2174/1386207319666160420

Tajbakhsh, E., Kwenti, T. E., Kheyri, P., Nezaratizade, S., & Lindsay, D. S. (2021). Antiplasmodial , antimalarial activities and toxicity of African medicinal plants : a systematic review of literature. Malaria Journal. https://doi.org/10.1186/s12936-021-03866-0

Urbina, A. S., & Slipchenko, L. V. (2025). Rationalizing protein-ligand interactions via the effective fragment potential method and structural data from classical molecular dynamics. Journal of Chemical Physics, 162(4). https://doi.org/10.1063/5.0247878

Venkatesan, P. (2024). News The 2023 WHO World malaria report. The Lancet Microbe, 5(3), e214. https://doi.org/10.1016/S2666-5247(24)00016-8

Wang, D., Jin, J., Shi, G., Bao, J., Wang, Z., Li, S., Pan, P., Li, D., Kang, Y., & Hou, T. (2025). ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction. Journal of Cheminformatics, 17(1). https://doi.org/10.1186/s13321-025-00947-z

World Health Organization. (2024). Global Malaria Programme operational strategy 2024-2030. 01–84.

Zailani, A. H., ., Hammanadama, I. I., & ., Adamu, M. G1., Lamiya, A. (2020). Ameliorative effects of some phytochemicals extracted from Cola acuminate leaf on altered liver function indices of mice infected with Plasmodium berghei (NK_65). International Journal of Scientific and Research Publications, 10(7), 1–5. https://doi.org/10.29322/IJSRP.10.07.2020.p10315




DOI: https://doi.org/10.14421/biomedich.2025.142.1579-1597

Refbacks

  • There are currently no refbacks.




Copyright (c) 2026 Abdulhafiz Lamiya, Adamu Jibril Alhassan, Maryam Abdulkadir Dangambo, Hauwa Ahmed Zailani



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC