Superoxide Anion Radicals Biosensor Based on Protein Extract from Deinococcus Radiodurans Immobilization by Glutaraldehyde Cross-Linked

Muhammad Ridho Afifi, Dyah Iswantini Pradono, Novik Nurhidayat, Dede Saprudin

Abstract


A common enzyme for superoxide anion radicals biosensors is superoxide dismutase (SOD). Deinococcus radiodurans protein extract can replace the use of pure SOD enzymes for superoxide anion radicals biosensors. The purpose of this research is to determine the analytical performance of the superoxide anion radicals biosensor with protein extract of Deinococcus radiodurans immobilized on carboxymethylcellulose-gelatin-zeolit (CMC-G-Z) that is crosslinked by glutaraldehyde. The response surface method showed that the optimum condition for the biosensor was pH 7, protein extract concentration of 1075 µg/ml, zeolite concentration of 5 mg/ml, and glutaraldehyde concentration of 0.0042 M. Stability of the biosensor retained 67% of its sensitivity after use for 24 hours. The biosensor exhibits good analytical performance with a linear range from 0.1 – 0.8 mM, a detection limit of 77.84 µM, and a limit of quantification of 259.5 µM with a correlation coefficient of 0.9905.

Keywords


Superoxide anion radicals; Deinococcus radiodurans; Biosensor; Superoxide dismutase (SOD); Glutaraldehyde

Full Text:

PDF

References


Albano, G. D., Gagliardo, R. P., Montalbano, A. M., & Profita, M. (2022). Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants, 11(11). https://doi.org/10.3390/antiox11112237

Aldiansyah, T., Safitri, E. K. A., Ginting, B., Suhud, K., Saleha, S., Nurhayati, N., Nazaruddin, S. L., Afifi, M. R., & Nurhaida, N. (2025). The validation of urea determination in saliva using optical urea biosensor with p-dimethylaminobenzaldehyde (DMAB) reagent. Jurnal natural. 25(1), 7–17. https://doi.org/10.24815/jn.v25i1.41251

Andrés, C. M. C., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24031841

Berillo, D., Malika, T., Baimakhanova, B. B., Sadanov, A. K., Berezin, V. E., Trenozhnikova, L. P., Baimakhanova, G. B., Amangeldi, A. A., & Kerimzhanova, B. (2024). An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels, 10(10). https://doi.org/10.3390/gels10100646

Bounegru, A. V., & Apetrei, C. (2023). Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors—A Review. Nanomaterials, 13(4). https://doi.org/10.3390/nano13040760

Braik, M., Barsan, M. M., Dridi, C., Ben Ali, M., & Brett, C. M. A. (2016). Highly sensitive amperometric enzyme biosensor for detection of superoxide based on conducting polymer/CNT modified electrodes and superoxide dismutase. Sensors and Actuators, B: Chemical, 236, 574–582. https://doi.org/10.1016/j.snb.2016.06.032

Chen, Y., Zhang, Q., Wang, D., Shu, Y.-G., & Shi, H. (2023). Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.03474-22

Chou, F. I., & Tan, S. T. (1991). Salt-mediated multicell formation in Deinococcus radiodurans. Journal of Bacteriology, 173(10), 3184–3190. https://doi.org/10.1128/jb.173.10.3184-3190.1991

Crulhas, B. P., Recco, L. C., Delella, F. K., & Pedrosa, V. A. (2017). A Novel Superoxide Anion Biosensor for Monitoring Reactive Species of Oxygen Released by Cancer Cells. Electroanalysis, 29(5), 1252–1257. https://doi.org/10.1002/elan.201600767

Dalmaso, G. Z. L., Lage, C. A. S., Mazotto, A. M., Dias, E. P. de S., Caldas, L. A., Ferreira, D., & Vermelho, A. B. (2015). Extracellular peptidases from Deinococcus radiodurans. Extremophiles, 19(5), 989–999. https://doi.org/10.1007/s00792-015-0773-y

Gaidamakova, E. K., Sharma, A., Matrosova, V. Y., Grichenko, O., Volpe, R. P., Tkavc, R., Conze, I. H., Klimenkova, P., Balygina, I., Horne, W. H., Gostincar, C., Chen, X., Makarova, K. S., Shuryak, I., Srinivasan, C., Jackson-Thompson, B., Hoffman, B. M., & Daly, M. J. (2022). Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. MBio, 13(1), 1–18. https://doi.org/10.1128/MBIO.03394-21

Ionescu, R. E. (2022). Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. Biosensors, 12(8). https://doi.org/10.3390/bios12080581

Iswantini, D., Weniarti, Nurhidayat, N., Abidin, Z., & Trivadila. (2019). Antioxidant biosensor based on superoxide dismutase from Indonesian microbes immobilized in Indonesian natural zeolite. Journal of Applied Pharmaceutical Science, 9(4), 104–109. https://doi.org/10.7324/JAPS.2019.90413

Jiang, H., & Bai, X. (2022). Apolipoprotein A-I mimetic peptides (ApoAI MP) improve oxidative stress and inflammatory responses in Parkinson’s disease mice. Frontiers in Pharmacology, 13(August), 1–12. https://doi.org/10.3389/fphar.2022.966232

Karakaya, U., Derkus, B., & Emregul, E. (2020). Development of gelatin-alginate-tio2-sod biosensor for the detection of superoxide radicals. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(2), 571–580. https://doi.org/10.18596/jotcsa.646433

Kocabay, O., Emregul, E., Aras, S., & Emregul, K. C. (2012). Carboxymethylcellulose-gelatin-superoxidase dismutase electrode for amperometric superoxide radical sensing. Bioprocess and Biosystems Engineering, 35(6), 923–930. https://doi.org/10.1007/s00449-011-0677-x

Liu, F., Jiang, X., He, N., Yu, R., Xue, Z., & Liu, X. (2022). Electrochemical investigation for enhancing cellular antioxidant defense system based on a superoxide anion sensor. Sensors and Actuators B: Chemical, 368(967), 730070. https://doi.org/10.1016/j.snb.2022.132190

Liu, J., Han, X., Zhang, T., Tian, K., Li, Z., & Luo, F. (2023). Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. Journal of Hematology and Oncology, 16(1), 1–34. https://doi.org/10.1186/s13045-023-01512-7

McDonald, A. G., & Tipton, K. F. (2022). Parameter Reliability and Understanding Enzyme Function. Molecules, 27(1), 1–18. https://doi.org/10.3390/molecules27010263

Moya, P. M. O., Granados, S. G., Bedioui, F., Moya, P. M. O., Granados, S. G., Bedioui, F., Griveau, S., Moya, P. M. O., Granados, S. G., & Bedioui, F. (2020). PEDOT / Superoxide dismutase electrode surface modification for superoxide bioelectrochemical sensing To cite this version : HAL Id : hal-03021337 PEDOT / Superoxide dismutase electrode surface modification for superoxide bioelectrochemical sensing.

Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(February), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006

Palmieri, G., Arciello, S., Bimonte, M., Carola, A., Tito, A., Gogliettino, M., Cocca, E., Fusco, C., Balestrieri, M., Colucci, M. G., & Apone, F. (2019). The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. Journal of Biotechnology, 302(May), 101–111. https://doi.org/10.1016/j.jbiotec.2019.07.002

Rataut?, K., & Ratautas, D. (2024). A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. Biosensors, 14(1). https://doi.org/10.3390/bios14010005

Sadowska-Bartosz, I., & Bartosz, G. (2023). Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? International Journal of Radiation Biology, 99(12), 1803–1829. https://doi.org/10.1080/09553002.2023.2241895

Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2021). Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anti-Cancer Agents in Medicinal Chemistry, 22(2), 215–222. https://doi.org/10.2174/1871520621666210608095512

Schröder, K. (2020). NADPH oxidases: Current aspects and tools: NADPH oxidase current tools. Redox Biology, 34(March). https://doi.org/10.1016/j.redox.2020.101512

Soldatkina, O. V., Kucherenko, I. S., Soldatkin, O. O., Pyeshkova, V. M., Dudchenko, O. Y., Akata Kurç, B., & Dzyadevych, S. V. (2019). Development of electrochemical biosensors with various types of zeolites. Applied Nanoscience (Switzerland), 9(5), 737–747. https://doi.org/10.1007/s13204-018-0725-9

Song, Y., Hao, J., Hu, D., Zeng, M., Li, P., Li, H., Chen, L., Tan, H., & Wang, L. (2017). Ratiometric fluorescent detection of superoxide anion with polystyrene@nanoscale coordination polymers. Sensors and Actuators, B: Chemical, 238, 938–944. https://doi.org/10.1016/j.snb.2016.04.181

Sukma, R. M., Iswantini, D., Nurhidayat, N., Rafi, M., & Ariyanti, D. (2023). Antioxidant Determining Using Electrochemical Method. Chemistry (Switzerland), 5(3), 1921–1941. https://doi.org/10.3390/chemistry5030131

Tavassolifar, M. J., Vodjgani, M., Salehi, Z., & Izad, M. (2020). The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Diseases, 2020. https://doi.org/10.1155/2020/5793817

Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J. B. B., & Krishnan, U. M. (2013). A novel nano-interfaced superoxide biosensor. Sensors and Actuators, B: Chemical, 176, 884–892. https://doi.org/10.1016/j.snb.2012.09.031

Vu, M. T., Noori, M. T., & Min, B. (2020). Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems. Chemical Engineering Journal, 393(October 2019), 124613. https://doi.org/10.1016/j.cej.2020.124613

Wang, Z. Y., Li, Y., Chang, W. Q., Zheng, J. Y., Li, P., Liu, L. F., & Xin, G. Z. (2018). Development and validation of a LC/MS-based method for the measurement of intracellular superoxide anion. Analytica Chimica Acta, 999, 107–113. https://doi.org/10.1016/j.aca.2017.11.007

Yang, J., Cao, Y., & Zhang, N. (2020). Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 239(2), 118556. https://doi.org/10.1016/j.saa.2020.118556

Ye, Q., Li, W., Wang, Z., Zhang, L., Tan, X., & Tian, Y. (2014). Direct electrochemistry of superoxide dismutases (Mn-, Fe-, and Ni-) from human pathogen Clostridium difficile: Toward application to superoxide biosensor. Journal of Electroanalytical Chemistry, 729, 21–26. https://doi.org/10.1016/j.jelechem.2014.06.029

Yun, Y. S., & Lee, Y. N. (2003). Production of superoxide dismutase by Deinococcus radiophilus. Journal of Biochemistry and Molecular Biology, 36(3), 282–287. https://doi.org/10.5483/bmbrep.2003.36.3.282

Zhang, H., Jiang, Z., Xia, Q., & Zhou, D. (2021). Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochemical Engineering Journal, 172(February), 108033. https://doi.org/10.1016/j.bej.2021.108033

Zouleh, R. S., Rahimnejad, M., Najafpour-Darzi, G., & Sabour, D. (2025). Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells. Analytical Biochemistry, 697(August 2024), 115710. https://doi.org/10.1016/j.ab.2024.115710




DOI: https://doi.org/10.14421/biomedich.2025.141.153-160

Refbacks





Copyright (c) 2025 Muhammad Ridho Afifi, Dyah Iswantini Pradono, Novik Nurhidayat, Dede Saprudin



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC