Superoxide Anion Radicals Biosensor Based on Protein Extract from Deinococcus Radiodurans Immobilization by Glutaraldehyde Cross-Linked
Abstract
Keywords
Full Text:
PDFReferences
Albano, G. D., Gagliardo, R. P., Montalbano, A. M., & Profita, M. (2022). Overview of the Mechanisms of Oxidative Stress: Impact in Inflammation of the Airway Diseases. Antioxidants, 11(11). https://doi.org/10.3390/antiox11112237
Aldiansyah, T., Safitri, E. K. A., Ginting, B., Suhud, K., Saleha, S., Nurhayati, N., Nazaruddin, S. L., Afifi, M. R., & Nurhaida, N. (2025). The validation of urea determination in saliva using optical urea biosensor with p-dimethylaminobenzaldehyde (DMAB) reagent. Jurnal natural. 25(1), 7–17. https://doi.org/10.24815/jn.v25i1.41251
Andrés, C. M. C., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide Anion Chemistry—Its Role at the Core of the Innate Immunity. International Journal of Molecular Sciences, 24(3). https://doi.org/10.3390/ijms24031841
Berillo, D., Malika, T., Baimakhanova, B. B., Sadanov, A. K., Berezin, V. E., Trenozhnikova, L. P., Baimakhanova, G. B., Amangeldi, A. A., & Kerimzhanova, B. (2024). An Overview of Microorganisms Immobilized in a Gel Structure for the Production of Precursors, Antibiotics, and Valuable Products. Gels, 10(10). https://doi.org/10.3390/gels10100646
Bounegru, A. V., & Apetrei, C. (2023). Tyrosinase Immobilization Strategies for the Development of Electrochemical Biosensors—A Review. Nanomaterials, 13(4). https://doi.org/10.3390/nano13040760
Braik, M., Barsan, M. M., Dridi, C., Ben Ali, M., & Brett, C. M. A. (2016). Highly sensitive amperometric enzyme biosensor for detection of superoxide based on conducting polymer/CNT modified electrodes and superoxide dismutase. Sensors and Actuators, B: Chemical, 236, 574–582. https://doi.org/10.1016/j.snb.2016.06.032
Chen, Y., Zhang, Q., Wang, D., Shu, Y.-G., & Shi, H. (2023). Memory Effect on the Survival of Deinococcus radiodurans after Exposure in Near Space. Microbiology Spectrum, 11(2). https://doi.org/10.1128/spectrum.03474-22
Chou, F. I., & Tan, S. T. (1991). Salt-mediated multicell formation in Deinococcus radiodurans. Journal of Bacteriology, 173(10), 3184–3190. https://doi.org/10.1128/jb.173.10.3184-3190.1991
Crulhas, B. P., Recco, L. C., Delella, F. K., & Pedrosa, V. A. (2017). A Novel Superoxide Anion Biosensor for Monitoring Reactive Species of Oxygen Released by Cancer Cells. Electroanalysis, 29(5), 1252–1257. https://doi.org/10.1002/elan.201600767
Dalmaso, G. Z. L., Lage, C. A. S., Mazotto, A. M., Dias, E. P. de S., Caldas, L. A., Ferreira, D., & Vermelho, A. B. (2015). Extracellular peptidases from Deinococcus radiodurans. Extremophiles, 19(5), 989–999. https://doi.org/10.1007/s00792-015-0773-y
Gaidamakova, E. K., Sharma, A., Matrosova, V. Y., Grichenko, O., Volpe, R. P., Tkavc, R., Conze, I. H., Klimenkova, P., Balygina, I., Horne, W. H., Gostincar, C., Chen, X., Makarova, K. S., Shuryak, I., Srinivasan, C., Jackson-Thompson, B., Hoffman, B. M., & Daly, M. J. (2022). Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation. MBio, 13(1), 1–18. https://doi.org/10.1128/MBIO.03394-21
Ionescu, R. E. (2022). Use of Cysteamine and Glutaraldehyde Chemicals for Robust Functionalization of Substrates with Protein Biomarkers—An Overview on the Construction of Biosensors with Different Transductions. Biosensors, 12(8). https://doi.org/10.3390/bios12080581
Iswantini, D., Weniarti, Nurhidayat, N., Abidin, Z., & Trivadila. (2019). Antioxidant biosensor based on superoxide dismutase from Indonesian microbes immobilized in Indonesian natural zeolite. Journal of Applied Pharmaceutical Science, 9(4), 104–109. https://doi.org/10.7324/JAPS.2019.90413
Jiang, H., & Bai, X. (2022). Apolipoprotein A-I mimetic peptides (ApoAI MP) improve oxidative stress and inflammatory responses in Parkinson’s disease mice. Frontiers in Pharmacology, 13(August), 1–12. https://doi.org/10.3389/fphar.2022.966232
Karakaya, U., Derkus, B., & Emregul, E. (2020). Development of gelatin-alginate-tio2-sod biosensor for the detection of superoxide radicals. Journal of the Turkish Chemical Society, Section A: Chemistry, 7(2), 571–580. https://doi.org/10.18596/jotcsa.646433
Kocabay, O., Emregul, E., Aras, S., & Emregul, K. C. (2012). Carboxymethylcellulose-gelatin-superoxidase dismutase electrode for amperometric superoxide radical sensing. Bioprocess and Biosystems Engineering, 35(6), 923–930. https://doi.org/10.1007/s00449-011-0677-x
Liu, F., Jiang, X., He, N., Yu, R., Xue, Z., & Liu, X. (2022). Electrochemical investigation for enhancing cellular antioxidant defense system based on a superoxide anion sensor. Sensors and Actuators B: Chemical, 368(967), 730070. https://doi.org/10.1016/j.snb.2022.132190
Liu, J., Han, X., Zhang, T., Tian, K., Li, Z., & Luo, F. (2023). Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: from mechanism to therapy. Journal of Hematology and Oncology, 16(1), 1–34. https://doi.org/10.1186/s13045-023-01512-7
McDonald, A. G., & Tipton, K. F. (2022). Parameter Reliability and Understanding Enzyme Function. Molecules, 27(1), 1–18. https://doi.org/10.3390/molecules27010263
Moya, P. M. O., Granados, S. G., Bedioui, F., Moya, P. M. O., Granados, S. G., Bedioui, F., Griveau, S., Moya, P. M. O., Granados, S. G., & Bedioui, F. (2020). PEDOT / Superoxide dismutase electrode surface modification for superoxide bioelectrochemical sensing To cite this version : HAL Id : hal-03021337 PEDOT / Superoxide dismutase electrode surface modification for superoxide bioelectrochemical sensing.
Nemiwal, M., Zhang, T. C., & Kumar, D. (2022). Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme and Microbial Technology, 156(February), 110006. https://doi.org/10.1016/j.enzmictec.2022.110006
Palmieri, G., Arciello, S., Bimonte, M., Carola, A., Tito, A., Gogliettino, M., Cocca, E., Fusco, C., Balestrieri, M., Colucci, M. G., & Apone, F. (2019). The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. Journal of Biotechnology, 302(May), 101–111. https://doi.org/10.1016/j.jbiotec.2019.07.002
Rataut?, K., & Ratautas, D. (2024). A Review from a Clinical Perspective: Recent Advances in Biosensors for the Detection of L-Amino Acids. Biosensors, 14(1). https://doi.org/10.3390/bios14010005
Sadowska-Bartosz, I., & Bartosz, G. (2023). Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? International Journal of Radiation Biology, 99(12), 1803–1829. https://doi.org/10.1080/09553002.2023.2241895
Sahoo, B. M., Banik, B. K., Borah, P., & Jain, A. (2021). Reactive Oxygen Species (ROS): Key Components in Cancer Therapies. Anti-Cancer Agents in Medicinal Chemistry, 22(2), 215–222. https://doi.org/10.2174/1871520621666210608095512
Schröder, K. (2020). NADPH oxidases: Current aspects and tools: NADPH oxidase current tools. Redox Biology, 34(March). https://doi.org/10.1016/j.redox.2020.101512
Soldatkina, O. V., Kucherenko, I. S., Soldatkin, O. O., Pyeshkova, V. M., Dudchenko, O. Y., Akata Kurç, B., & Dzyadevych, S. V. (2019). Development of electrochemical biosensors with various types of zeolites. Applied Nanoscience (Switzerland), 9(5), 737–747. https://doi.org/10.1007/s13204-018-0725-9
Song, Y., Hao, J., Hu, D., Zeng, M., Li, P., Li, H., Chen, L., Tan, H., & Wang, L. (2017). Ratiometric fluorescent detection of superoxide anion with polystyrene@nanoscale coordination polymers. Sensors and Actuators, B: Chemical, 238, 938–944. https://doi.org/10.1016/j.snb.2016.04.181
Sukma, R. M., Iswantini, D., Nurhidayat, N., Rafi, M., & Ariyanti, D. (2023). Antioxidant Determining Using Electrochemical Method. Chemistry (Switzerland), 5(3), 1921–1941. https://doi.org/10.3390/chemistry5030131
Tavassolifar, M. J., Vodjgani, M., Salehi, Z., & Izad, M. (2020). The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Diseases, 2020. https://doi.org/10.1155/2020/5793817
Thandavan, K., Gandhi, S., Sethuraman, S., Rayappan, J. B. B., & Krishnan, U. M. (2013). A novel nano-interfaced superoxide biosensor. Sensors and Actuators, B: Chemical, 176, 884–892. https://doi.org/10.1016/j.snb.2012.09.031
Vu, M. T., Noori, M. T., & Min, B. (2020). Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems. Chemical Engineering Journal, 393(October 2019), 124613. https://doi.org/10.1016/j.cej.2020.124613
Wang, Z. Y., Li, Y., Chang, W. Q., Zheng, J. Y., Li, P., Liu, L. F., & Xin, G. Z. (2018). Development and validation of a LC/MS-based method for the measurement of intracellular superoxide anion. Analytica Chimica Acta, 999, 107–113. https://doi.org/10.1016/j.aca.2017.11.007
Yang, J., Cao, Y., & Zhang, N. (2020). Spectrophotometric method for superoxide anion radical detection in a visible light (400–780 nm) system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 239(2), 118556. https://doi.org/10.1016/j.saa.2020.118556
Ye, Q., Li, W., Wang, Z., Zhang, L., Tan, X., & Tian, Y. (2014). Direct electrochemistry of superoxide dismutases (Mn-, Fe-, and Ni-) from human pathogen Clostridium difficile: Toward application to superoxide biosensor. Journal of Electroanalytical Chemistry, 729, 21–26. https://doi.org/10.1016/j.jelechem.2014.06.029
Yun, Y. S., & Lee, Y. N. (2003). Production of superoxide dismutase by Deinococcus radiophilus. Journal of Biochemistry and Molecular Biology, 36(3), 282–287. https://doi.org/10.5483/bmbrep.2003.36.3.282
Zhang, H., Jiang, Z., Xia, Q., & Zhou, D. (2021). Progress and perspective of enzyme immobilization on zeolite crystal materials. Biochemical Engineering Journal, 172(February), 108033. https://doi.org/10.1016/j.bej.2021.108033
Zouleh, R. S., Rahimnejad, M., Najafpour-Darzi, G., & Sabour, D. (2025). Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells. Analytical Biochemistry, 697(August 2024), 115710. https://doi.org/10.1016/j.ab.2024.115710
DOI: https://doi.org/10.14421/biomedich.2025.141.153-160
Refbacks
Copyright (c) 2025 Muhammad Ridho Afifi, Dyah Iswantini Pradono, Novik Nurhidayat, Dede Saprudin
Biology, Medicine, & Natural Product Chemistry |