Phytochemicals and Antibacterial Activity of Impatiens balsamina L. Leaf Extracts Against Gram-Positive and Gram-Negative Bacteria

Putu Utari Fridayanthi, Made Dharmesti Wijaya, Desak Putu Citra Udiyani, Anak Agung Gede Indraningrat, Marta Setiabudy

Abstract


The emergence of antibiotic resistance as one of the global public health threats makes research on new antibacterial compounds urgently needed. Among natural resources, the Impatiens balsamina plant has the potential to be explored as the new source of antibacterial agents. This study aimed to identify the phytochemical composition and evaluate the antibacterial activity of I. balsamina leaf extracts against Gram-positive and Gram-negative bacteria. Extracts were prepared using the maceration method with methanol, chloroform, and n-hexane solvents at a 1:5 sample-to-solvent ratio. Phytochemical screening was performed qualitatively, and antibacterial activity was evaluated using the disc diffusion assay. Analysis of methanol extract detected the presence of flavonoids, saponins, tannins, phenols, steroids, and glycosides, while chloroform extract consisted of tannins, phenols, and steroids. On the other hand, steroids were the only compounds detected qualitatively in n-hexane extract. Antibacterial testing revealed that methanol extract exhibited the highest activity, with zones of inhibition (ZOI) of 15.10±0.18 mm, 9.40±0.30 mm, 14.75±1.28 mm, and 8.67±0.50 mm against Streptococcus mutans FNCC 0405, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 700603, respectively. A concentration-dependent ZOI was observed in the methanol extract, with activity increasing at higher concentrations. GC-MS analysis of the methanol extract identified 32 compounds, including n-hexadecanoic acid (12.12%), 2-acetylbenzoic acid (8.26%), 5-hydroxymethylfurfural (8.21%), and 2-methoxy-4-vinylphenol (4.67%), which are known to possess antimicrobial, antioxidant, and anti-inflammatory activities. Chloroform extract showed moderate activity against S. mutans (7.04±0.15 mm) and S. aureus (7.10±0.31 mm), while n-hexane extract exhibited no antibacterial activity. The significant antibacterial activity of methanol extract is likely due to its rich phytochemical composition, highlighting methanol as an effective solvent for extracting bioactive compounds. These findings provide a strong foundation for further exploration of I. balsamina leaf extracts as a source of antibacterial agents.

Keywords


Antibacterial Activity; Gram-Positive; Gram-Negative; Impatiens balsamina Leaf Extracts; Phytochemicals

Full Text:

PDF

References


Aishah, H. N., Zaini, N. M., & Haslinda, M. (2012). Antimicrobial activity of pimpinella anisum seed extract. In Microbes in Applied Research: Current Advances and Challenges, Malaga, Spain, 14 - 16 September 2011 (pp. 486–491). World Scientific Publishing Co. https://doi.org/10.1142/9789814405041_0098

Allyn, O. Q., Kusumawati, E., & Nugroho, R. A. (2018). Antimicrobial activity of terminalia catappa brown leaf extracts against staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.15998.1

Andriyani, R., Kosasih, W., Ningrum, D. R., & Pudjiraharti, S. (2017). Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract. In K. M. & N. M. (Eds.), IOP Conference Series: Earth and Environmental Science (Vol. 60, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/60/1/012012

Arya, O. P., Adhikari, P., Pandey, A., Bhatt, I. D., & Mohanty, K. (2022). Health-promoting bioactive phenolic compounds in different solvent extracts of Curcuma caesia Roxb. rhizome from North-East India. Journal of Food Processing and Preservation, 46(8). https://doi.org/10.1111/jfpp.16805

Aziz, M. A., Akter, M. I., Islam, M. R., Sajon, S. R., Hossain, M. S., Tajmim, A., Yasmen, N., Rahman, S. M. M., Hazra, A. K., & Jodder, P. (2018). Phytochemical screening and antimicrobial activity of microcos paniculata leaves. Pharmacologyonline, 1, 9–14. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048035860&partnerID=40&md5=cd064f606c82bec7b90cda55e6199bdb

Chatepa, L. E. C., Mwamatope, B., Chikowe, I., & Masamba, K. G. (2024). Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complementary Medicine and Therapies, 24(1). https://doi.org/10.1186/s12906-024-04619-7

Chen, X., Lan, W., & Xie, J. (2024). Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chemistry, 440. https://doi.org/10.1016/j.foodchem.2023.138198

Cui, N., Zhang, L., Quan, M., & Xu, J. (2020). Profile of the main bioactive compounds and: In vitro biological activity of different solvent extracts from Ginkgo biloba exocarp. RSC Advances, 10(73), 45105–45111. https://doi.org/10.1039/d0ra09490k

da Silva, A. R. P., Costa, M. D. S., Araújo, N. J. S., de Freitas, T. S., de Almeida, R. S., Barbosa Filho, J. M., Tavares, J. F., de Souza, E. O., de Farias, P. A. M., Pinheiro, J. C. A., & Coutinho, H. D. M. (2022). Potentiation of Antibiotic Action and Efflux Pump Inhibitory Effect on Staphylococcus aureus Strains by Solasodine. Antibiotics, 11(10). https://doi.org/10.3390/antibiotics11101309

Davis, W. W., & Stout, T. R. (1971). Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Applied Microbiology, 22(4), 659–665. https://doi.org/10.1128/aem.22.4.659-665.1971

Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003

Ghaffar, N., & Perveen, A. (2024). Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: a comparative study. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.2024.2392705

Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V, Zamyatnin, A. A., & Ikryannikova, L. N. (2020). Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics, 9(4). https://doi.org/10.3390/antibiotics9040170

Hasan, N. A., Nawahwi, M. Z., & Malek, H. A. (2013). Antimicrobial activity of nigella sativa seed extract. Sains Malaysiana, 42(2), 143–147. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872319852&partnerID=40&md5=b56dbf693b39640288742d8f5eba5fe9

Li, J., & Monje-Galvan, V. (2024). Effect of Glycone Diversity on the Interaction of Triterpenoid Saponins and Lipid Bilayers. ACS Applied Bio Materials, 7(2), 553–563. https://doi.org/10.1021/acsabm.2c00928

Mazumder, K., Nabila, A., Aktar, A., & Farahnaky, A. (2020). Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: A comprehensive substantiation. Antioxidants, 9(4). https://doi.org/10.3390/antiox9040282

Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102321

Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0

Neamah, R., Mohsin, H., & Kamil, H. (2021). Phytochemical Screening and Antibacterial Effect of Methanol Extracts of Suaeda aegyptiaca Leaves on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Archives of Razi Institute, 76(5), 1221–1227. https://doi.org/10.22092/ari.2021.356133.1784

Olchowik-Grabarek, E., Sękowski, S., Kwiatek, A., Płaczkiewicz, J., Abdulladjanova, N., Shlyonsky, V., Swiecicka, I., & Zamaraeva, M. (2022). The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. Membranes, 12(11). https://doi.org/10.3390/membranes12111124

Pandey, A., & Agnihotri, V. (2015). Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In Biotechnology of Bioactive Compounds: Sources and Applications (Vol. 9781118733, pp. 123–150). Wiley Blackwell. https://doi.org/10.1002/9781118733103.ch5

Pouran, F., Mahdavian, A., Aghazadeh, H., & Navidinia, M. (2024). Mini Review: Antimicrobial Agents Based on Natural Compounds: The Key to Solving the Current Crisis. Archives of Pediatric Infectious Diseases, 12(4). https://doi.org/10.5812/apid-146195

Qian, H., Wang, B., Ma, J., Li, C., Zhang, Q., & Zhao, Y. (2023). Impatiens balsamina: An updated review on the ethnobotanical uses, phytochemistry, and pharmacological activity. Journal of Ethnopharmacology, 303. https://doi.org/10.1016/j.jep.2022.115956

Ralambondrahety, R., Couzinet-Mossion, A., Rabesaotra, V., Andriambeloson, O., Barnathan, G., Rakotovao, M., & Wielgosz-Collin, G. (2021). Antibacterial activity of steroids isolated from the madagascar marine sponge biemna laboutei: Δ7 steroids as new potential agents against pathogenic bacteria. Natural Products Journal, 11(1), 57–62. https://doi.org/10.2174/2210315509666191204123011

Rubab, M., Chelliah, R., Saravanakumar, K., Barathikannan, K., Wei, S., Kim, J. R., Yoo, D., Wang, M. H., & Oh, D. H. (2020). Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on oxidative and microbiological stability of beef meat. Foods, 9(5). https://doi.org/10.3390/foods9050568

Seukep, A. J., Mbuntcha, H. G., Zeuko’o, E. M., Woquan, L. S., Nembu, N. E., Bomba, F. T., Watching, D., & Kuete, V. (2023). Established antibacterial drugs from plants. Advances in Botanical Research, 106, 81–149. https://doi.org/10.1016/bs.abr.2022.08.005

Seukep, A. J., Nembu, N. E., Mbuntcha, H. G., & Kuete, V. (2023). Bacterial drug resistance towards natural products. Advances in Botanical Research, 106, 21–45. https://doi.org/10.1016/bs.abr.2022.08.002

Singh, C., Singh, S. K., Singh, K. A., Singh, A., Nath, G., & Rai, N. P. (2010). Inhibitory response of drug resistant bacteria towards methanol extract of Piper longum L. fruit. Pharmacologyonline, 1, 634–643. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953190152&partnerID=40&md5=9f17c6adfa938944cd639e686b84a12b

Singh, R., & Tandon, V. (2023). Antibiotics: Past, Present, Future, and Clinical Pipeline. In Recent Advances in Pharmaceutical Innovation and Research (pp. 583–619). Springer Singapore. https://doi.org/10.1007/978-981-99-2302-1_24

Siswadi, S., & Saragih, G. S. (2021). Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353(May). https://doi.org/10.1063/5.0053057

Šovljanski, O., Kljakić, A. C., & Tomić, A. (2023). Antibacterial and Antifungal Potential of Plant Secondary Metabolites. In Reference Series in Phytochemistry (Vol. 2023, Issues 41–1, pp. 1–43). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-031-30037-0_6-1

Tan, Z., Deng, J., Ye, Q., & Zhang, Z. (2022). The Antibacterial Activity of Natural-Derived Flavonoids. Current Topics in Medicinal Chemistry, 22(12), 1009–1019. https://doi.org/10.2174/1568026622666220221110506

Vimalavady, a, & Kadavul, K. (2013). Phytocomponents identified on the various extracts of stem of Hugonia mystax L. (Linaceae). European Journal of Experimental Biology, 3(1), 73–80.

Wang, Z.-X., Kong, W.-Z., Guan, S.-N., Zhang, N., Yu, Y.-B., & Zhang, X.-Y. (2024). Pitsubcosides M−S: Novel antibacterial cadinane sesquiterpenoid glycoside esters from Pittosporum subulisepalum. Industrial Crops and Products, 208. https://doi.org/10.1016/j.indcrop.2023.117917

Wijaya, M. D., & Indraningrat, A. A. G. (2021). Antibacterial Activity of Mangrove Root Extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali. Biology, Medicine, & Natural Product Chemistry; Vol 10, No 2 (2021)DO - 10.14421/Biomedich.2021.102.117-121. https://sciencebiology.org/index.php/BIOMEDICH/article/view/163

World Health Organization. (2024). Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019

Zhang, R.-B., Gao, W.-M., Dai, Z.-Y., Li, M.-Y., Chen, Z.-G., & Ren, G.-P. (2021). Study on the extraction process of dihydromyricetin from the combination of medicine and food homologous materials. Food and Machinery, 37(10), 138-143and175. https://doi.org/10.13652/j.issn.1003-5788.2021.10.024

Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., & Chen, T. (2013). In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of Agricultural and Food Chemistry, 61(44), 10604–10611. https://doi.org/10.1021/jf403098y




DOI: https://doi.org/10.14421/biomedich.2025.141.327-335

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Putu Utari Fridayanthi, Made Dharmesti Wijaya, Desak Putu Citra Udiyani, Anak Agung Gede Indraningrat, Marta Setiabudy



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC