Phytochemicals and Antibacterial Activity of Impatiens balsamina L. Leaf Extracts Against Gram-Positive and Gram-Negative Bacteria
Abstract
Keywords
Full Text:
PDFReferences
Aishah, H. N., Zaini, N. M., & Haslinda, M. (2012). Antimicrobial activity of pimpinella anisum seed extract. In Microbes in Applied Research: Current Advances and Challenges, Malaga, Spain, 14 - 16 September 2011 (pp. 486–491). World Scientific Publishing Co. https://doi.org/10.1142/9789814405041_0098
Allyn, O. Q., Kusumawati, E., & Nugroho, R. A. (2018). Antimicrobial activity of terminalia catappa brown leaf extracts against staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853. F1000Research, 7. https://doi.org/10.12688/F1000RESEARCH.15998.1
Andriyani, R., Kosasih, W., Ningrum, D. R., & Pudjiraharti, S. (2017). Effect of temperature, time, and milling process on yield, flavonoid, and total phenolic content of Zingiber officinale water extract. In K. M. & N. M. (Eds.), IOP Conference Series: Earth and Environmental Science (Vol. 60, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/60/1/012012
Arya, O. P., Adhikari, P., Pandey, A., Bhatt, I. D., & Mohanty, K. (2022). Health-promoting bioactive phenolic compounds in different solvent extracts of Curcuma caesia Roxb. rhizome from North-East India. Journal of Food Processing and Preservation, 46(8). https://doi.org/10.1111/jfpp.16805
Aziz, M. A., Akter, M. I., Islam, M. R., Sajon, S. R., Hossain, M. S., Tajmim, A., Yasmen, N., Rahman, S. M. M., Hazra, A. K., & Jodder, P. (2018). Phytochemical screening and antimicrobial activity of microcos paniculata leaves. Pharmacologyonline, 1, 9–14. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048035860&partnerID=40&md5=cd064f606c82bec7b90cda55e6199bdb
Chatepa, L. E. C., Mwamatope, B., Chikowe, I., & Masamba, K. G. (2024). Effects of solvent extraction on the phytoconstituents and in vitro antioxidant activity properties of leaf extracts of the two selected medicinal plants from Malawi. BMC Complementary Medicine and Therapies, 24(1). https://doi.org/10.1186/s12906-024-04619-7
Chen, X., Lan, W., & Xie, J. (2024). Natural phenolic compounds: Antimicrobial properties, antimicrobial mechanisms, and potential utilization in the preservation of aquatic products. Food Chemistry, 440. https://doi.org/10.1016/j.foodchem.2023.138198
Cui, N., Zhang, L., Quan, M., & Xu, J. (2020). Profile of the main bioactive compounds and: In vitro biological activity of different solvent extracts from Ginkgo biloba exocarp. RSC Advances, 10(73), 45105–45111. https://doi.org/10.1039/d0ra09490k
da Silva, A. R. P., Costa, M. D. S., Araújo, N. J. S., de Freitas, T. S., de Almeida, R. S., Barbosa Filho, J. M., Tavares, J. F., de Souza, E. O., de Farias, P. A. M., Pinheiro, J. C. A., & Coutinho, H. D. M. (2022). Potentiation of Antibiotic Action and Efflux Pump Inhibitory Effect on Staphylococcus aureus Strains by Solasodine. Antibiotics, 11(10). https://doi.org/10.3390/antibiotics11101309
Davis, W. W., & Stout, T. R. (1971). Disc plate method of microbiological antibiotic assay. I. Factors influencing variability and error. Applied Microbiology, 22(4), 659–665. https://doi.org/10.1128/aem.22.4.659-665.1971
Dirar, A. I., Alsaadi, D. H. M., Wada, M., Mohamed, M. A., Watanabe, T., & Devkota, H. P. (2019). Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African Journal of Botany, 120, 261–267. https://doi.org/10.1016/j.sajb.2018.07.003
Ghaffar, N., & Perveen, A. (2024). Solvent polarity effects on extraction yield, phenolic content, and antioxidant properties of Malvaceae family seeds: a comparative study. New Zealand Journal of Botany. https://doi.org/10.1080/0028825X.2024.2392705
Gorlenko, C. L., Kiselev, H. Y., Budanova, E. V, Zamyatnin, A. A., & Ikryannikova, L. N. (2020). Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: New heroes or worse clones of antibiotics? Antibiotics, 9(4). https://doi.org/10.3390/antibiotics9040170
Hasan, N. A., Nawahwi, M. Z., & Malek, H. A. (2013). Antimicrobial activity of nigella sativa seed extract. Sains Malaysiana, 42(2), 143–147. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84872319852&partnerID=40&md5=b56dbf693b39640288742d8f5eba5fe9
Li, J., & Monje-Galvan, V. (2024). Effect of Glycone Diversity on the Interaction of Triterpenoid Saponins and Lipid Bilayers. ACS Applied Bio Materials, 7(2), 553–563. https://doi.org/10.1021/acsabm.2c00928
Mazumder, K., Nabila, A., Aktar, A., & Farahnaky, A. (2020). Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: A comprehensive substantiation. Antioxidants, 9(4). https://doi.org/10.3390/antiox9040282
Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R. D., Idzik, D., & Wąsik, T. J. (2018). Phenolic compounds diminish antibiotic resistance of staphylococcus aureus clinical strains. International Journal of Environmental Research and Public Health, 15(10). https://doi.org/10.3390/ijerph15102321
Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., … Naghavi, M. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0
Neamah, R., Mohsin, H., & Kamil, H. (2021). Phytochemical Screening and Antibacterial Effect of Methanol Extracts of Suaeda aegyptiaca Leaves on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Archives of Razi Institute, 76(5), 1221–1227. https://doi.org/10.22092/ari.2021.356133.1784
Olchowik-Grabarek, E., Sękowski, S., Kwiatek, A., Płaczkiewicz, J., Abdulladjanova, N., Shlyonsky, V., Swiecicka, I., & Zamaraeva, M. (2022). The Structural Changes in the Membranes of Staphylococcus aureus Caused by Hydrolysable Tannins Witness Their Antibacterial Activity. Membranes, 12(11). https://doi.org/10.3390/membranes12111124
Pandey, A., & Agnihotri, V. (2015). Antimicrobials from medicinal plants: Research initiatives, challenges, and the future prospects. In Biotechnology of Bioactive Compounds: Sources and Applications (Vol. 9781118733, pp. 123–150). Wiley Blackwell. https://doi.org/10.1002/9781118733103.ch5
Pouran, F., Mahdavian, A., Aghazadeh, H., & Navidinia, M. (2024). Mini Review: Antimicrobial Agents Based on Natural Compounds: The Key to Solving the Current Crisis. Archives of Pediatric Infectious Diseases, 12(4). https://doi.org/10.5812/apid-146195
Qian, H., Wang, B., Ma, J., Li, C., Zhang, Q., & Zhao, Y. (2023). Impatiens balsamina: An updated review on the ethnobotanical uses, phytochemistry, and pharmacological activity. Journal of Ethnopharmacology, 303. https://doi.org/10.1016/j.jep.2022.115956
Ralambondrahety, R., Couzinet-Mossion, A., Rabesaotra, V., Andriambeloson, O., Barnathan, G., Rakotovao, M., & Wielgosz-Collin, G. (2021). Antibacterial activity of steroids isolated from the madagascar marine sponge biemna laboutei: Δ7 steroids as new potential agents against pathogenic bacteria. Natural Products Journal, 11(1), 57–62. https://doi.org/10.2174/2210315509666191204123011
Rubab, M., Chelliah, R., Saravanakumar, K., Barathikannan, K., Wei, S., Kim, J. R., Yoo, D., Wang, M. H., & Oh, D. H. (2020). Bioactive potential of 2-methoxy-4-vinylphenol and benzofuran from Brassica oleracea L. var. capitate f, rubra (Red Cabbage) on oxidative and microbiological stability of beef meat. Foods, 9(5). https://doi.org/10.3390/foods9050568
Seukep, A. J., Mbuntcha, H. G., Zeuko’o, E. M., Woquan, L. S., Nembu, N. E., Bomba, F. T., Watching, D., & Kuete, V. (2023). Established antibacterial drugs from plants. Advances in Botanical Research, 106, 81–149. https://doi.org/10.1016/bs.abr.2022.08.005
Seukep, A. J., Nembu, N. E., Mbuntcha, H. G., & Kuete, V. (2023). Bacterial drug resistance towards natural products. Advances in Botanical Research, 106, 21–45. https://doi.org/10.1016/bs.abr.2022.08.002
Singh, C., Singh, S. K., Singh, K. A., Singh, A., Nath, G., & Rai, N. P. (2010). Inhibitory response of drug resistant bacteria towards methanol extract of Piper longum L. fruit. Pharmacologyonline, 1, 634–643. https://www.scopus.com/inward/record.uri?eid=2-s2.0-77953190152&partnerID=40&md5=9f17c6adfa938944cd639e686b84a12b
Singh, R., & Tandon, V. (2023). Antibiotics: Past, Present, Future, and Clinical Pipeline. In Recent Advances in Pharmaceutical Innovation and Research (pp. 583–619). Springer Singapore. https://doi.org/10.1007/978-981-99-2302-1_24
Siswadi, S., & Saragih, G. S. (2021). Phytochemical analysis of bioactive compounds in ethanolic extract of Sterculia quadrifida R.Br. AIP Conference Proceedings, 2353(May). https://doi.org/10.1063/5.0053057
Šovljanski, O., Kljakić, A. C., & Tomić, A. (2023). Antibacterial and Antifungal Potential of Plant Secondary Metabolites. In Reference Series in Phytochemistry (Vol. 2023, Issues 41–1, pp. 1–43). Springer Science and Business Media B.V. https://doi.org/10.1007/978-3-031-30037-0_6-1
Tan, Z., Deng, J., Ye, Q., & Zhang, Z. (2022). The Antibacterial Activity of Natural-Derived Flavonoids. Current Topics in Medicinal Chemistry, 22(12), 1009–1019. https://doi.org/10.2174/1568026622666220221110506
Vimalavady, a, & Kadavul, K. (2013). Phytocomponents identified on the various extracts of stem of Hugonia mystax L. (Linaceae). European Journal of Experimental Biology, 3(1), 73–80.
Wang, Z.-X., Kong, W.-Z., Guan, S.-N., Zhang, N., Yu, Y.-B., & Zhang, X.-Y. (2024). Pitsubcosides M−S: Novel antibacterial cadinane sesquiterpenoid glycoside esters from Pittosporum subulisepalum. Industrial Crops and Products, 208. https://doi.org/10.1016/j.indcrop.2023.117917
Wijaya, M. D., & Indraningrat, A. A. G. (2021). Antibacterial Activity of Mangrove Root Extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali. Biology, Medicine, & Natural Product Chemistry; Vol 10, No 2 (2021)DO - 10.14421/Biomedich.2021.102.117-121. https://sciencebiology.org/index.php/BIOMEDICH/article/view/163
World Health Organization. (2024). Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019
Zhang, R.-B., Gao, W.-M., Dai, Z.-Y., Li, M.-Y., Chen, Z.-G., & Ren, G.-P. (2021). Study on the extraction process of dihydromyricetin from the combination of medicine and food homologous materials. Food and Machinery, 37(10), 138-143and175. https://doi.org/10.13652/j.issn.1003-5788.2021.10.024
Zhao, L., Chen, J., Su, J., Li, L., Hu, S., Li, B., Zhang, X., Xu, Z., & Chen, T. (2013). In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of Agricultural and Food Chemistry, 61(44), 10604–10611. https://doi.org/10.1021/jf403098y
DOI: https://doi.org/10.14421/biomedich.2025.141.327-335
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Putu Utari Fridayanthi, Made Dharmesti Wijaya, Desak Putu Citra Udiyani, Anak Agung Gede Indraningrat, Marta Setiabudy
Biology, Medicine, & Natural Product Chemistry |