Protein Hydrolysates from Cucumeropsis mannii Seed Inhibit Alpha-amylase In-vitro: Potential for Managing Postprandial Hyperglycemia

Oladimeji Taiwo Babatunde, Clement Olatunbosun Bewaji, Adedoyin Igunnu

Abstract


Diabetes mellitus is a significant global cause of mortality. A hallmark of diabetes pathophysiology is postprandial hyperglycaemia (PPH). PPH is defined as a sudden and exponential increase in blood glucose levels after meals, typically above 140 mg/dL, which does not return to pre-meal levels after two to three hours, leading to glucose toxicity, oxidative stress, cardiovascular risks, and diabetes complications. A management option for PPH is the inhibition of carbohydrate-metabolizing enzymes, such as alpha-amylase. However, current inhibitors are associated with gastrointestinal side effects. Therefore, the search for novel inhibitors is a rational research endeavor. Recent studies highlight plant-derived protein hydrolysates as inhibitors of alpha-amylase. In this study, proteins from Cucumeropsis mannii (C. mannii) were isolated using alkaline solubilization-acid precipitation method and enzymatically cleaved using pepsin and pancreatin to yield C. mannii seed protein hydrolysates. The ?-amylase inhibitory property of the hydrolysates was investigated, using starch as the substrate. The IC50 values for ?-amylase inhibition were 8.77 ± 0.35 mg/mL (pancreatin-derived) and 14.80 ± 0.50 mg/mL (pepsin-derived). Kinetic studies indicated uncompetitive inhibition for pancreatin-derived hydrolysate and mixed uncompetitive for pepsin-derived hydrolysate at 9 mg/mL. These results suggest that C. mannii seed protein hydrolysates may aid in postprandial hyperglycemia management through ?-amylase inhibition.

Keywords


Diabetes Mellitus; Alpha-amylase Inhibition; Postprandial hyperglycaemia; Protein Hydrolysates; Cucumeropsis mannii Seed.

Full Text:

PDF

References


Alashi AM, Blanchard CL, Mailer RJ, Agboola SO, Mawson AJ, He R, Malomo SA, Girgih AT, Aluko RE. 2014. Blood pressure lowering effects of Australian canola protein hydrolysates in spontaneously hypertensive rats. Food Research International 55: 281-287. https://doi.org/http://dx.doi.org/10.1016/j.foodres.2013.11.015

Ali H, Houghton P, Soumyanath A. 2006. ?-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of ethnopharmacology 107(3): 449-455. https://doi.org/https://doi.org/10.1016/j.jep.2006.04.004

American Diabetes Association. 2024. Standards of Care in Diabetes—2024. Diabetes Care 47(Supplement_1): S1-S154. https://doi.org/10.2337/dc24-S001

Andriamihaja M, Guillot A, Svendsen A, Hagedorn J, Rakotondratohanina S, Tomé D, Blachier F. 2013. Comparative efficiency of microbial enzyme preparations versus pancreatin for in vitro alimentary protein digestion. Amino Acids 44(2): 563-572. https://doi.org/https://doi.org/10.1007/s00726-012-1373-0

Arise AK, Amonsou EO, Ijabadeniyi OA. 2015. Influence of extraction methods on functional properties of protein concentrates prepared from S outh A frican bambara groundnut landraces. International Journal of Food Science & Technology 50(5): 1095-1101. https://doi.org/http://dx.doi.org/10.1111/ijfs.12746

Arise RO, Idi JJ, Mic-Braimoh IM, Korode E, Ahmed RN, Osemwegie O. 2019. In vitro Angiotesin-1-converting enzyme, ?-amylase and ?-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate. Heliyon 5(5). https://doi.org/https://doi.org/10.1016/j.heliyon.2019.e01634

Arise RO, Yekeen AA, Ekun OE. 2016. In vitro antioxidant and ?-amylase inhibitory properties of watermelon seed protein hydrolysates. Environmental & Experimental Biology 14(4). https://doi.org/http://dx.doi.org/10.22364/eeb.14.23

Babatunde O, Emenike R, Igunnu A, Bewaji C, Ajayi O. 2022a. In vitro ?lpha-amylase inhibitory and antioxidant properties of Annona muricata seed protein hydrolysates. Int. J. Publ. Soc. Exp. Biol. Niger 34: 34102. https://www.researchgate.net/publication/366389595_in_vitro_alpha-amylase_inhibitory_and_antioxidant_properties_of_annona_muricata_seed_protein_hydrolysates

Babatunde O, Igunnu A, Bewaji C. 2022b. In vitro ?-amylase inhibitory and antioxidant properties of pancreatin-derived Polyalthia longifolia seed protein hydrolysate. Ceylon Journal of Science 51(3): 247-257. https://doi.org/https://doi.org/10.4038/cjs.v51i3.8032

Benítez R, Ibarz A, Pagan J. 2008. Hidrolizados de proteína: procesos y aplicaciones. Acta bioquímica clínica latinoamericana 42(2): 227-236. https://doi.org/http://hdl.handle.net/10459.1/49268

Bernfeld P. 1951. Enzymes of starch degradation and synthesis. Advances in enzymology and related areas of molecular biology 12: 379-428. https://doi.org/https://doi.org/10.1002/9780470122570.ch7

Besong SA, Ezekwe MO, Fosung CN, Senwo ZN. 2011. Evaluation of nutrient composition of African melon oilseed (Cucumeropsis mannii Naudin) for human nutrition. International journal of nutrition and metabolism 3(8): 103-108. https://doi.org/https://academicjournals.org/journal/IJNAM/article-full-text-pdf/3FE9FA95986

Boye J, Aksay S, Roufik S, Ribéreau S, Mondor M, Farnworth E, Rajamohamed S. 2010. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International 43(2): 537-546. https://doi.org/https://doi.org/10.1016/j.foodres.2009.07.021

Brownlee M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6): 1615-1625. https://doi.org/10.2337/diabetes.54.6.1615

Butterworth PJ, Warren FJ, Ellis PR. 2011. Human ?-amylase and starch digestion: An interesting marriage. Starch - Stärke 63(7): 395-405. https://doi.org/https://doi.org/10.1002/star.201000150

Campos C. 2012. Chronic hyperglycemia and glucose toxicity: pathology and clinical sequelae. Postgrad Med 124(6): 90-97. https://doi.org/10.3810/pgm.2012.11.2615

Ceriello A. 2005. Postprandial Hyperglycemia and Diabetes Complications: Is It Time to Treat? Diabetes 54(1): 1-7. https://doi.org/10.2337/diabetes.54.1.1

Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. 2002. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 359(9323): 2072-2077. https://doi.org/10.1016/s0140-6736(02)08905-5

Clemente A. 2000. Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology 11(7): 254-262. https://doi.org/https://doi.org/10.1016/S0924-2244(01)00007-3

Ezuruike UF, Prieto JM. 2014. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. Journal of ethnopharmacology 155(2): 857-924. https://doi.org/https://doi.org/10.1016/j.jep.2014.05.055

Gerich J. 2013. Pathogenesis and management of postprandial hyperglycemia: role of incretin-based therapies. Int J Gen Med 6: 877-895. https://doi.org/10.2147/ijgm.S51665

Girgih AT, Udenigwe CC, Li H, Adebiyi AP, Aluko RE. 2011. Kinetics of enzyme inhibition and antihypertensive effects of hemp seed (Cannabis sativa L.) protein hydrolysates. Journal of the American Oil Chemists' Society 88: 1767-1774. https://doi.org/http://dx.doi.org/10.1007/s11746-011-1841-9

Gornall AG, Bardawill CJ, David MM. 1949. Determination of serum proteins by means of the biuret reaction. J. biol. Chem 177(2): 751-766. https://doi.org/https://doi.org/10.1016/S0021-9258(18)57021-6

Hoyle N. 1994. Quality of fish protein hydrolyzates from herring. J. Food Sci. 59: 129. https://doi.org/https://doi.org/10.1111/j.1365-2621.1994.tb06901.x

Ishida Y, Shibata Y, Fukuhara I, Yano Y, Takehara I, Kaneko K. 2011. Effect of an excess intake of casein hydrolysate containing Val-Pro-Pro and Ile-Pro-Pro in subjects with normal blood pressure, high-normal blood pressure, or mild hypertension. Bioscience, biotechnology, and biochemistry 75(3): 427-433. https://doi.org/https://doi.org/10.1271/bbb.100560

Ismail A, Marjan ZM, Foong CW. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry 87(4): 581-586. https://doi.org/https://doi.org/10.1016/j.foodchem.2004.01.010

James JI, Aisami A, Maijama’a MS, Adams BD, Zira SG. 2020a. Invitro ?-amylase Inhibitory Activity and Antioxidant Profile of Carica Papaya Seed Protein Hydrolysate. https://doi.org/https://doi.org/10.29329/ijiasr.2020.237.1

James JI, Aisami A, Muhammad SA, Saidu L, Patricia S, Peter ML. 2020b. Psidium guajava seed protein hydrolysates exhibit in vitro antioxidant and inhibitory activity against ?-amylase and ?-glucosidase. Int J Innov Approach Sci Res 4(4): 84-99. https://doi.org/https://doi.org/10.29329/ijiasr.2020.312.1

Jiang M, Yan H, He R, Ma Y. 2018. Purification and a molecular docking study of ?-glucosidase-inhibitory peptides from a soybean protein hydrolysate with ultrasonic pretreatment. European Food Research and Technology 244: 1995-2005. https://doi.org/https://doi.org/10.1007/s00217-018-3111-7

Kalinovskii AP, Sintsova OV, Gladkikh IN, Leychenko EV. (2023). Natural Inhibitors of Mammalian ?-Amylases as Promising Drugs for the Treatment of Metabolic Diseases. International journal of molecular sciences, 24(22).

Korhonen H, Pihlanto A. 2006. Bioactive peptides: Production and functionality. International dairy journal 16(9): 945-960. https://doi.org/https://doi.org/10.1016/j.idairyj.2005.10.012

Kumar S, Narwal S, Kumar V, Prakash O. 2011. ?-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy reviews 5(9): 19. https://doi.org/https://doi.org/10.4103/0973-7847.79096

Liu T, Gu Y, Waleed ALA, Wang L, Li Y, Qian H. 2024. Challenges and opportunities in developing low glycemic index foods with white kidney bean ?-amylase inhibitor. Trends in Food Science & Technology 147: 104397. https://doi.org/https://doi.org/10.1016/j.tifs.2024.104397

Maffettone A, Rinaldi M, Fontanella A. 2018. Postprandial hyperglycemia: A new frontier in diabetes management? Italian Journal of Medicine 12: 108. https://doi.org/10.4081/itjm.2018.961

Naik P. 2012. Protein metabolism. Essentials of biochemistry: 226-257. https://doi.org/https://pdfcoffee.com/essentials-of-biochemistry-by-pankaja-naikpdf-pdf-free.html

Nasri M. 2017. Protein hydrolysates and biopeptides: Production, biological activities, and applications in foods and health benefits. A review. Advances in food and nutrition research 81: 109-159. https://doi.org/https://doi.org/10.1016/bs.afnr.2016.10.003

Nelson D, Cox M. 2008. Enzymes Lehninger Principles of biochemistry 5th edition. Ch 4: 183-233. https://doi.org/http://dx.doi.org/10.1007/978-3-662-08289-8

Ngoh Y-Y, Tye GJ, Gan C-Y. 2017. The investigation of ?-amylase inhibitory activity of selected Pinto bean peptides via preclinical study using AR42J cell. Journal of Functional Foods 35: 641-647. https://doi.org/http://dx.doi.org/10.1016/j.jff.2017.06.037

Nickavar B, Yousefian N. 2022. Inhibitory Effects of Six Allium Species on ?-Amylase Enzyme Activity [Research Article]. Iran J Pharm Res 8(1): e128615. https://doi.org/10.22037/ijpr.2010.788

Oboh G, Ademiluyi AO, Faloye YM. 2011. Effect of combination on the antioxidant and inhibitory properties of tropical pepper varieties against ?-amylase and ?-glucosidase activities in vitro. Journal of medicinal food 14(10): 1152-1158. https://doi.org/https://doi.org/10.1089/jmf.2010.0194

Olusola A, Ekun O, David T, Olorunfemi O, Oyewale M. 2018. Moringa oleifera seed protein hydrolysates: kinetics of ?-amylase inhibition and antioxidant potentials. Global Advanced Research Journal of Medicine and Medical Sciences 7(9): 190-201. https://doi.org/https://doi.org/10.14421/biomedich.2022.111.7-16

Onuh JO, Girgih AT, Malomo SA, Aluko RE, Aliani M. 2015. Kinetics of in vitro renin and angiotensin converting enzyme inhibition by chicken skin protein hydrolysates and their blood pressure lowering effects in spontaneously hypertensive rats. Journal of Functional Foods 14: 133-143. https://doi.org/https://doi.org/10.1016/j.jff.2015.01.031

Osborne TB. (1924). The vegetable proteins (Vol. 114). Longmans, Green and Company. https://doi.org/https://doi.org/10.1038/114822c0

Pinés Corrales PJ, Bellido Castañeda V, Ampudia-Blasco FJ. 2020. Update on postprandial hyperglycaemia: the pathophysiology, prevalence, consequences and implications of treating diabetes. Rev Clin Esp (Barc) 220(1): 57-68. https://doi.org/10.1016/j.rce.2018.06.015

Qin X, Ren L, Yang X, Bai F, Wang L, Geng P, Bai G, Shen Y. 2011. Structures of human pancreatic ?-amylase in complex with acarviostatins: Implications for drug design against type II diabetes. Journal of structural biology 174(1): 196-202. https://doi.org/https://doi.org/10.1016/j.jsb.2010.11.020

Ramadhan AH, Nawas T, Zhang X, Pembe WM, Xia W, Xu Y. 2017. Purification and identification of a novel antidiabetic peptide from Chinese giant salamander (Andrias davidianus) protein hydrolysate against ?-amylase and ?-glucosidase. International journal of food properties 20(sup3): S3360-S3372. https://doi.org/10.1080/10942912.2017.1354885

Ren Y, Liang K, Jin Y, Zhang M, Chen Y, Wu H, Lai F. 2016. Identification and characterization of two novel ?-glucosidase inhibitory oligopeptides from hemp (Cannabis sativa L.) seed protein. Journal of Functional Foods 26: 439-450. https://doi.org/http://dx.doi.org/10.1016/j.jff.2016.07.024

Shahi Z, Sayyed-Alangi SZ, Najafian L. 2020. Effects of enzyme type and process time on hydrolysis degree, electrophoresis bands and antioxidant properties of hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon 6(2). https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e03365

Udenigwe CC, Aluko RE. 2012. Food protein?derived bioactive peptides: production, processing, and potential health benefits. Journal of food science 77(1): R11-R24. https://doi.org/https://doi.org/10.1111/j.1750-3841.2011.02455.x

Udenigwe CC, Lin Y-S, Hou W-C, Aluko RE. 2009. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. Journal of Functional Foods 1(2): 199-207. https://doi.org/http://dx.doi.org/10.1016/j.jff.2009.01.009

Wang J, Wu T, Fang L, Liu C, Liu X, Li H, Shi J, Li M, Min W. 2020. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting ?-glucosidase and ?-amylase, and alleviating insulin resistance of hepatic HepG2 cells. Journal of Functional Foods 69: 103944. https://doi.org/https://doi.org/10.1016/j.jff.2020.103944

Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US. 2011. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J Sci Food Agric 91(1): 113-121. https://doi.org/10.1002/jsfa.4160

Zhang Y, Guo K, LeBlanc RE, Loh D, Schwartz GJ, Yu Y-H. 2007. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6): 1647-1654. https://doi.org/https://doi.org/10.2337/db07-0123




DOI: https://doi.org/10.14421/biomedich.2025.141.57-66

Refbacks

  • There are currently no refbacks.




Copyright (c) 2025 Oladimeji Taiwo Babatunde, Clement Olatunbosun Bewaji, Adedoyin Igunnu



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC