Shrimp Digestive Bacteria Performance for Shrimp Waste Chitin Extraction

Kristina Novalina Nainggolan, Yudha Perdana Putra, Evi Fitriyani

Abstract


Generally, chitin is isolated chemically. An environmentally friendly alternative to chitin extraction is enzymatic extraction. The research aims to determine the effectiveness and optimum conditions for enzymatic chitin extraction of shrimp waste (heads, shells, and tails) using lactic acid bacteria (LAB) and proteolytic bacteria from the shrimp's digestive tract (faeces and intestines). The research stages were isolation, enrichment, and determining shrimp digestion's bacterial colonies, microscopic identification of shrimp digestive bacteria, and determining the effectiveness and optimal conditions for shrimp waste's chitin isolation. Aerobic and Anaerobic Total Plate Count (TPC), LAB, and proteolytic bacteria from shrimp's digestive tract per gram of sample were respectively 5.52 and 5.59 log CFU; 4.76 and 4.56 log CFU; 6.46 and 6.20 log CFU. Microscopic morphology shows that LAB and proteolytic bacteria of shrimp digestive are gram-positive as cocci or rods. The deproteinization value of shrimp waste reached 31%, especially for treatment with a pH of 5.0–7.0 (during proteolytic bacteria fermentation) and pre-treatment of boiling, drying and coarse grinding of shrimp waste (PP2) before extraction. However, the demineralization value of shrimp waste is only 4.5% (PP1) and 3% (PP2), with LAB as the primary fermentation agent because proteolytic bacteria have been unable to reduce the mineral content in shrimp waste further.

Keywords


chitin; enzymatic extraction; digestive tract; lactic acid and proteolytic bacteria, shrimp waste

Full Text:

PDF

References


Adeyeye, E. I., & Aremu, M. O. (2016). Chemical Composition of Whole Shrimp, Flesh and Shell of Pandalus borealis from Lagos Atlantic Ocean. FUW Trends in Science & Technology Journal, 1(1), 26–32. https://www.researchgate.net/publication/305642149

An, T., Zhou, L., Li, G., Fu, J., & Sheng, G. (2008). Recent Patents on Immobilized Microorganism Technology and Its Engineering Application in Wastewater Treatment. Recent Patents on Engineering, 2(1), 28–35. https://doi.org/10.2174/187221208783478543

Anteneh, Y. S., & Franco, C. M. M. (2019). Whole cell actinobacteria as biocatalysts. Frontiers in Microbiology, 10(FEB), 1–15. https://doi.org/10.3389/fmicb.2019.00077

Badan Standardisasi Nasional. (2006a). SNI 01-2354.3-2006 Cara uji kimia - Bagian 3: Penentuan kadar lemak total pada produk perikanan. In Jakarta: Badan Standardisasi Nasional. https://idoc.pub/queue/sni-uji-kadar-lemak-pnxkq7ykg94v

Badan Standardisasi Nasional. (2006b). SNI 01-2354.4-2006 Cara uji kimia - Bagian 4: Penentuan kadar protein dengan metode total nitrogen pada produk perikanan. In Jakarta: Badan Standarisasi Nasional.

Badan Standardisasi Nasional. (2010). SNI 2354.1:2010 Cara uji kimia - Bagian 1: Penentuan kadar abu dan abu tak larut asam pada produk perikanan.

Badan Standardisasi Nasional. (2015a). SNI 2332.3:2015 Cara uji mikrobiologi - Bagian 3: Penentuan Angka Lempeng Total (ALT) pada produk perikanan. In Jakarta: Badan Standardisasi Nasional.

Badan Standardisasi Nasional. (2015b). SNI 2354.2:2015 Cara uji kimia – Bagian 2: Pengujian kadar air pada produk perikanan. In Jakarta: Badan Standarisasi Nasional.

Bastiaens, L., Soetemans, L., D’Hondt, E., & Elst, K. (2020). Sources of chitin and chitosan and their isolation. In L. A. M. Van Den Broek & C. G. Boeriu (Eds.), Chitin and Chitosan: Properties and Applications (1st ed., pp. 1–34). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119450467.ch1

Bhowmik, S., Islam, S., Ahmed, M. M., Belal Hossain, M., & Hossain, M. A. (2015). Protease producing bacteria and activity in gut of tiger shrimp (Penaeus monodon). Journal of Fisheries and Aquatic Science, 10(6), 489–500. https://doi.org/10.3923/jfas.2015.489.500

Cahú, T. B., Santos, S. D., Mendes, A., Córdula, C. R., Chavante, S. F., Carvalho, L. B., Nader, H. B., & Bezerra, R. S. (2012). Recovery of protein, chitin, carotenoids and glycosaminoglycans from Pacific white shrimp (Litopenaeus vannamei) processing waste. Process Biochemistry, 47(4), 570–577. https://doi.org/10.1016/j.procbio.2011.12.012

Duan, S., Li, L., Zhuang, Z., Wu, W., Hong, S., & Zhou, J. (2012). Improved production of chitin from shrimp waste by fermentation with epiphytic lactic acid bacteria. Carbohydrate Polymers, 89(4), 1283–1288. https://doi.org/10.1016/j.carbpol.2012.04.051

Ehrlich, H. (2010). Chitin and collagen as universal and alternative templates in biomineralization. In International Geology Review (Vol. 52, Issues 7–8). https://doi.org/10.1080/00206811003679521

El-Bialy, H. A. A., & Abd El-Khalek, H. H. (2020). A comparative study on astaxanthin recovery from shrimp wastes using lactic fermentation and green solvents:an applied model on minced Tilapia. Journal of Radiation Research and Applied Sciences, 13(1), 594–605. https://doi.org/10.1080/16878507.2020.1789388

Erkmen, O. (2021). Microbiological Analysis of Foods and Food Processing Environments. Elsevier Inc. https://doi.org/https://doi.org/10.1016/C2021-0-01219-0

Fadhallah, E. G., Koesoemawardani, D., & Indraningtyas, L. (2023). Chemical Properties of Liquid Broth Extracted from Freshwater and Marine Shrimp Shells Waste. Biology, Medicine, & Natural Product Chemistry, 12(2), 437–440. https://doi.org/10.14421/biomedich.2023.122.437-440

Fitriadi, R., Setyawan, A. C., Palupi, M., Nurhafid, M., & Kusuma, R. O. (2023). Isolation and molecular identification of proteolytic bacteria from vaname shrimp (Lithopenaeus Vannamei) ponds as probiotic agents. Iraqi Journal of Veterinary Sciences, 37(1), 161–170. https://doi.org/10.33899/ijvs.2022.133468.2251

Genisheva, Z., Teixeira, J. A., & Oliveira, J. M. (2014). Immobilized cell systems for batch and continuous winemaking. Trends in Food Science and Technology, 40(1), 33–47. https://doi.org/10.1016/j.tifs.2014.07.009

Ghorbel-Bellaaj, O., Hajji, S., Younes, I., Chaabouni, M., Nasri, M., & Jellouli, K. (2013). Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. International Journal of Biological Macromolecules, 61, 243–250. https://doi.org/10.1016/j.ijbiomac.2013.07.001

Hamdi, M., Hammami, A., Hajji, S., Jridi, M., Nasri, M., & Nasri, R. (2017). Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. International Journal of Biological Macromolecules, 101, 455–463. https://doi.org/10.1016/j.ijbiomac.2017.02.103

Holt, C. C., Bass, D., Stentiford, G. D., & van der Giezen, M. (2021). Understanding the role of the shrimp gut microbiome in health and disease. Journal of Invertebrate Pathology, 186(April 2020), 107387. https://doi.org/10.1016/j.jip.2020.107387

Hu, J., Lu, W., Lv, M., Wang, Y., Ding, R., & Wang, L. (2019). Extraction and purification of astaxanthin from shrimp shells and the effects of different treatments on its content. Revista Brasileira de Farmacognosia, 29(1), 24–29. https://doi.org/10.1016/j.bjp.2018.11.004

Huang, C. H., Lin, C. H., Huang, H. H., & Tsai, G. J. (2022). Development of Fermented Shrimp Shell Product with Hypoglycemic and Hypolipidemic Effects on Diabetic Rats. Metabolites, 12(8). https://doi.org/10.3390/metabo12080695

Hutkins, R. W. (2019). Microbiology and Technology of Fermented Foods: Second Edition. In Wiley-Blackwell. IFT Press, John Wiley & Sons, Inc. https://doi.org/10.1002/9780470277515

Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1), 1–11. https://doi.org/10.1038/s41467-019-13036-1

Kaur, S., & Dhillon, G. S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: A review. Critical Reviews in Biotechnology, 35(1), 44–61. https://doi.org/10.3109/07388551.2013.798256

Kim, Y., & Park, R. D. (2015). Progress in bioextraction processes of chitin from crustacean biowastes. Journal of the Korean Society for Applied Biological Chemistry, 58(4), 545–554. https://doi.org/10.1007/s13765-015-0080-4

Kongnum, K., & Hongpattarakere, T. (2012). Effect of Lactobacillus plantarum isolated from digestive tract of wild shrimp on growth and survival of white shrimp (Litopenaeus vannamei) challenged with Vibrio harveyi. Fish and Shellfish Immunology, 32(1), 170–177. https://doi.org/10.1016/j.fsi.2011.11.008

Kumari, S., & Kishor, R. (2020). Chitin and chitosan: origin, properties, and applications. In S. Gopi, S. Thomas, & A. Pius (Eds.), Handbook of Chitin and Chitosan: Volume 1: Preparation and Properties. Elsevier Inc. https://doi.org/10.1016/B978-0-12-817970-3.00001-8

Liu, M., Bayjanov, J. R., Renckens, B., Nauta, A., & Siezen, R. J. (2010). The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC Genomics, 11(1), 5–8. https://doi.org/10.1186/1471-2164-11-36

Liu, Z., Liu, Q., Zhang, D., Wei, S., Sun, Q., Xia, Q., Shi, W., Ji, H., & Liu, S. (2021). Comparison of the proximate composition and nutritional profile of byproducts and edible parts of five species of shrimp. Foods, 10(11), 1–16. https://doi.org/10.3390/foods10112603

Lu, D. L., Zhang, M. S., Deng, J. J., Lu, W. J., Yang, Z. D., Li, Z. W., Chen, Y. C., & Luo, X. C. (2023). Highly efficient shrimp shell recovery by solid-state fermentation with Streptomyces sp. SCUT-3. Chemical Engineering Journal, 458(December 2022), 141256. https://doi.org/10.1016/j.cej.2022.141256

Masri, M., Sukmawaty, E., & Aditia, L. (2021). Novel chitinolytic bacteria from the shrimp shell processing waste. Biodiversitas, 22(5), 2672–2681. https://doi.org/10.13057/biodiv/d220527

Mehrotra, T., Dev, S., Banerjee, A., Chatterjee, A., Singh, R., & Aggarwal, S. (2021). Use of immobilized bacteria for environmental bioremediation: A review. Journal of Environmental Chemical Engineering, 9(5), 105920. https://doi.org/10.1016/j.jece.2021.105920

Mokoena, M. P. (2017). Lactic acid bacteria and their bacteriocins: Classification, biosynthesis and applications against uropathogens: A mini-review. Molecules, 22(8). https://doi.org/10.3390/molecules22081255

Mulyati, Suryati, Baga, I., Ardiansyah, Hamal, R., & Rusli. (2023). Proteolytic Bacteria of Digestive Tract Vanname Shrimp.pdf. Asian Journal of Fisheries and Aquatic Research, 25(3), 113–122. https://journalajfar.com/index.php/AJFAR/article/view/671

Nainggolan, K. N. (2023). Ekstraksi Enzimatik Kitin dan Kitosan dari Limbah Udang. MANFISH JOURNAL, 4(1), 50–71. https://doi.org/https://doi.org/10.31573/manfish.v4i1

Omont, A., Elizondo-González, R., Quiroz-Guzmán, E., Escobedo-Fregoso, C., Hernández-Herrera, R., & Peña-Rodríguez, A. (2020). Digestive microbiota of shrimp Penaeus vannamei and oyster Crassostrea gigas co-cultured in integrated multi-trophic aquaculture system. Aquaculture, 521, 735059. https://doi.org/10.1016/j.aquaculture.2020.735059

Perez, S., & Wertz, J.-L. (2022). Chitin and Chitosans in the Bioeconomy (1st ed.). Taylor & Francis Group. https://doi.org/https://doi.org/10.1201/9781003226529

Polakovič, M., Švitel, J., Bučko, M., Filip, J., Neděla, V., Ansorge-Schumacher, M. B., & Gemeiner, P. (2017). Progress in biocatalysis with immobilized viable whole cells: systems development, reaction engineering and applications. Biotechnology Letters, 39(5), 667–683. https://doi.org/10.1007/s10529-017-2300-y

Rao, M. S., Muñoz, J., & Stevens, W. F. (2000). Critical factors in chitin production by fermentation of shrimp biowaste. Applied Microbiology and Biotechnology, 54(6), 808–813. https://doi.org/10.1007/s002530000449

Rødde, R. H., Einbu, A., & Vårum, K. M. (2008). A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate Polymers, 71(3), 388–393. https://doi.org/10.1016/j.carbpol.2007.06.006

Ruangwicha, J., Cheirsilp, B., & Suyotha, W. (2024). Green biorefinery of shrimp shell waste for α-chitin and high-value co-products through successive fermentation by co-lactic acid bacteria and proteolytic fungus. Bioresource Technology, 393, 1–12. https://doi.org/10.1016/j.biortech.2023.130106

Setia, I. N., & S. (2015). Chitinolytic Assay and Identification of Bacteria Isolated from Shrimp Waste Based on 16S rDNA Sequences. Advances in Microbiology, 05(07), 541–548. https://doi.org/10.4236/aim.2015.57056

Sixto-Berrocal, A. M., Vázquez-Aldana, M., Miranda-Castro, S. P., Martínez-Trujillo, M. A., & Cruz-Díaz, M. R. (2023). Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. International Journal of Biological Macromolecules, 230(October 2022). https://doi.org/10.1016/j.ijbiomac.2023.123204

Solanki, P., Putatunda, C., Kumar, A., Bhatia, R., & Walia, A. (2021). Microbial proteases: ubiquitous enzymes with innumerable uses. 3 Biotech, 11(10), 1–25. https://doi.org/10.1007/s13205-021-02928-z

Subsanguan, T., Khondee, N., Nawavimarn, P., Rongsayamanont, W., Chen, C. Y., & Luepromchai, E. (2020). Reuse of Immobilized Weissella cibaria PN3 for Long-Term Production of Both Extracellular and Cell-Bound Glycolipid Biosurfactants. Frontiers in Bioengineering and Biotechnology, 8(July), 1–14. https://doi.org/10.3389/fbioe.2020.00751

Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., Zibek, S., Gagliardini, A., Panariello, L., Coltelli, M. B., De Bonis, A., & Falabella, P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 12(1), 1–17. https://doi.org/10.1038/s41598-022-10423-5

Waldeck, J., Daum, G., Bisping, B., & Meinhardt, F. (2006). Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Applied and Environmental Microbiology, 72(12), 7879–7885. https://doi.org/10.1128/AEM.00938-06

Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79(4), 687–697. https://doi.org/10.1007/s00253-008-1471-9

Zargar, V., Asghari, M., & Dashti, A. (2015). A Review on Chitin and Chitosan Polymers : Structure , Chemistry , Solubility , Derivatives , and Applications. 00, 1–24. https://doi.org/10.1002/cben.201400025

Zhao, Y., Duan, C., Zhang, X. X., Chen, H., Ren, H., Yin, Y., & Ye, L. (2018). Insights into the gut microbiota of freshwater shrimp and its associations with the surrounding microbiota and environmental factors. Journal of Microbiology and Biotechnology, 28(6), 946–956. https://doi.org/10.4014/jmb.1710.09070

Zur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic responses of bacterial cells to immobilization. Molecules, 21(7). https://doi.org/10.3390/molecules21070958




DOI: https://doi.org/10.14421/biomedich.2024.131.183-191

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Kristina Novalina Nainggolan, Yudha Perdana Putra, Evi Fitriyani



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC