Therapeutic Azithromycin Mitigated Monosodium Glutamate-Related Dysfunction in Rats’ Body Weight and Serum, Liver, Kidney and Heart Antioxidant Defense Bioindicators

Anthony Cemaluk Chinedum Egbuonu, Prince Ogochukwu Alaebo, Udumma Nsofor Onuoha, Chinomso Juliet Njoku, Obioma Benedeth Eze, Francisca Ugochi Odoemelam, Michael Eberechukwu Edum, Ojichukwu Boniface Obi, Mmesoma Joy Ukaegbu, Sandra Uchechi Nwaogwugwu, Marvellous Chinonso Orji, Clara Ngozika Ndukwe, Prosper Opara, Chinagorom Oyoyo, Chika Blessing Joe-Eme, Cheluchiaka Jecinta Okwoigwe

Abstract


Monosodium glutamate (MSG) mediates body weight gain (BWG) and oxidative stress. Azithromycin (AZT), may be abused and co-consumed with MSG to present unknown outcomes on BWG and oxidative stress. This study evaluated the effect of AZT and MSG in rats’ BWG and antioxidant bioindicators. Thirty rats assigned to five groups were orally exposed for seven consecutive days to groups A, control (distilled water, 1 ml/kg), B, MSG (MSG 8000 mg/kg), C, therapeutic AZT, TAZ (AZT 82.5 mg/kg), D, overdose AZT, OAZ (AZT 412.5 mg/kg) and E, TAZ + MSG (AZT 82.5 mg/kg + MSG 8000 mg/kg). MSG-treated rats exhibited a significantly (p < 0.05) increased BWG; serum, liver, kidney and heart reduced glutathione (GSH), glutathione peroxidase (GPX), superoxide dismutase (SOD), and malondialdehyde (MDA) but decreased catalase (CAT) and zinc (Zn) levels compared to control. Co-treated TAZ + MSG rats significantly (p < 0.05) decreased BWG, GSH, GPX, SOD, Zn; increased CAT and non-significantly (p > 0.05) decreased MDA compared to MSG and control. Thus, TAZ significantly mitigated BWG, and malfunction in the metabolism of antioxidant defense bioindicators in MSG rats via probable anorexigenic, anti-inflammatory and antioxidant responses. This suggests that TAZ could be useful in managing MSG-related dysfunction in BWG and metabolic activity of the antioxidant defense apparatus in rats.

Keywords


Monosodium glutamate; Azithromycin; Organ toxicity; Oxidative stress; Antioxidants; Body weight gain

Full Text:

PDF

References


Ayoola, M.B., Ejiofor, N.C., Ezeagu, I.E., & Achukwu, P. (2019). Organo-protective effect of Moringa oleifera (moringa) and Camellia sinensis (green tea) against histopathological damage in monosodium glutamate-induced oxidative-stressed rats. Advances in Food Technology and Nutritional Sciences Open Journal, 5(1), 26-37. doi:10.17140/AFTNSOJ-5-154.

Bergami, M., Manfrini, O., Nava, S., Caramori, G., Yoon, J., Badimon, L., Cenko, E., David, A., Demiri, I., Dorobantu, M., Fabin, N., Gheorghe-Fronea O., Jankovic, R., Kedev, S., Ladjevic, N., & Lasica, R. et al. (2023). Relationship between azithromycin and cardiovascular outcomes in unvaccinated patients with COVID-19 and preexisting cardiovascular disease. Journal of the American Heart Association, 12:e028939, 1-36. doi: 10.1161/JAHA.122.028939.

Casado, M.E., Collado-Pérez, R., Frago, L.M., & Barrios, V. (2023). Recent advances in the knowledge of the mechanisms of leptin physiology and actions in neurological and metabolic pathologies. International Journal of Molecular Sciences, 24, 1422. https://doi.org/10.3390/ijms24021422.

Correia, A.S., Cardoso, A., & Vale, N. (2023). Oxidative stress in depression: the link with the stress response, neuroinflammation, serotonin, neurogenesis and synaptic plasticity. Antioxidants, 12, 470. https://doi.org/10.3390/antiox12020470.

Dinos, G.P. (2017). The macrolide antibiotic renaissance. British Journal of Pharmacology, 174(18), 2967-2983.

Egbuonu, A.C.C., Alaebo, P.O., Chukwu, C.N., Uwandu, D.D.C., Orji, I.M., Uzoechi, J.C., & Nwuke, C.P. (2021). Therapeutic artemether-lumefantrine modulated monosodium glutamate-related adversity on rats’ kidney histology and antioxidant response bio-indicators. Journal of Applied Science and Environmental Management, 25(5), 787-794. doi:10.4314/jasem.v25i5.18.

Egbuonu, A.C.C., & Elendu, D.S. (2021). Alterations in brain histomorphology and some homogenate antioxidant bio-pointers in L-arginine co-exposed aspartame-assaulted rats. Animal Research International, 18(2), 4116-4124.

Elwahab, D.A., Alim, M.A.A., Sharkawi, S.M.Z., & Nabil, S. (2020). Detection of cardiac tissues toxicity caused by monosodium glutamate and the protective role of vitamin c by immunohistochemical method, heart tissue oxidative stress biomarkers and cardiac dysfunction biomarkers. The Egyptian Journal of Forensic Sciences and Applied Toxicology, 20(3), 13-21. doi: 10.21608/ejfsat.2020.17652.1098.

El-Gendy, M.S., El-Gezawy, E.S., Saleh, A.A., Alhotan, R.A., Al-Badwi, M.A.A., Hussein, E.O.S., El-Tahan, H.M., Kim, I.H., Cho, S., & Omar, S.M. (2023). Investigating the chemical composition of lepidium sativum seeds and their ability to safeguard against monosodium glutamate-induced hepatic dysfunction. Foods, 12, 4129. https://doi.org/10.3390/foods12224129.

Fohner, A.E., Sparreboom, A., Altman, R.B., & Klein, T.E. (2017). PharmGKB summary: Macrolide antibiotic pathway, pharmacokinetics/pharmacodynamics. Pharmacogenetis and Genomics, 27(4), 164-167.

Gautret, P., Lagier, J.C., Parola, P., Hoang, V.T., Meddeb, L., & Mailhe, M., et al. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949.

Goldberg, D.M., & Spooner, R.J. (1983). Assay of glutathione reductase. In: Bergmeyen, H.V. (Ed.). Methods of Enzymatic Analysis. 3rd Edition, Volume 3, Verlag Chemie, Deerfield Beach, Florida. Pages 258 -265.

Handy, D.E., & Loscalzo, J. (2022). The role of glutathione peroxidase-1 in health and disease. Free Radical Biology and Medicine, 188: 146-161. doi:10.1016/j.freeradbiomed.2022.06.004.

Ismael, Z.M., & Elsamman, W.N. (2022). Evaluation of the effects of azithromycin on the kidney of adult albino rats and the possible protective role of vitamin c using histological and immuno-

histochemical studies. SVU-International Journal of Medical Sciences, 5(2), 484-500.

Johansson, L.H., & Borg, L.A. (1988). A spectrophotometric method for determination of catalase activity in small sample tissues. Analytical Biochemistry, 174(1), 331- 336.

Johnsen, O., & Eliasson, R. (1987). Evaluation of a commercially available kit for the colorimetric determination of zinc in human seminal plasma. International Journal of Andrology, 10(2), 435-440.

Joshi, D.M., Dhurvey, V.T, Katke, S.R., Pawar, H.B., & Mohurle, P.M. (2023). Effect of monosodium glutamate on hepatotoxicity and nephrotoxicity: A mini review. World Journal of Biology Pharmacy and Health Sciences, 15(01), 152-159. doi: https://doi.org/10.30574/wjbphs.2023.15.1.0318.

Kıran, T.R., Otlu, O., & Karabulut, A.B. (2023). Oxidative stress and antioxidants in health and disease. Journal of Laboratory Medicine, 47(1), 1-11. doi:10.1515/labmed-2022-0108.

Madesh, M., & Balasubramanian, K.A. (1998). Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. Indian Journal of Biochemistry and Biophysics, 35(3), 184-188.

Martelli, D., & Brooks, V.L. (2023). Leptin increases: Physiological roles in the control of sympathetic nerve activity, energy balance, and the hypothalamic–pituitary–thyroid axis. International Journal of Molecular Sciences, 24, 2684. https://doi.org/10.3390/ijms24032684.

Obi, E., & Egbuonu, A.C.C. (2019). Changes in the liver histomorphology, catalase and glutathione peroxidase activity in the serum and liver homogenate of normal and monosodium glutamate-intoxicated rats co-treated with artemether-lumefantrine. International Journal of Molecular Biology Open Access, 4(2), 67-73. doi: 10.15406/ijmboa.2019.04.00099.

Obradovic, M., Sudar-Milovanovic, E., Soskic, S., Essack, M., Arya, S., Stewart, A.J., Gojobori, T., & Isenovic, E.R. (2021). Leptin and obesity: Role and clinical implication. Frontiers in Endocrinology, 12, 585887. doi: 10.3389/fendo.2021.585887.

O’Brien, K.S., Emerson, P., & Hooper, P.J., et al. (2019). Antimicrobial resistance following mass azithromycin distribution for trachoma: a systematic review. Lancet Infectious Diseases, 19(1), e14-e25. doi:10.1016/S1473-3099(18)30444-4.

Okereke, S., Edom, V., Nwaogwugwu, C., Aaron, C., Oko, I., Obinna, I., Ekechukwu, G., Alugbuo, U., & James, U. (2023). Toxicological assessment of Irvingia gabonensis leaf extracts in albino rats: A comparative study between aqueous and ethanol extraction methods. Advances in Biological Chemistry, 13, 143-170. doi: 10.4236/abc.2023.134011.

o

Oliver, M.E., & Hinks, T.S.C. (2021). Azithromycin in viral infections. Review in Medical Virology, 31(2), e2163. doi:10.1002/rmv.2163.

Paglia, D.E., & Valentine, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70(1), 158-169.

Principle Trial Collaborative Group. (2021). Azithromycin for community treatment of an adverse clinical course in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet, 397(10279), 1063-1074. doi:10.1016/S0140-6736(21)00461-X.

Recovery Collaborative Group. (2021). Azithromycin in the treatment of patients admitted to the hospital with severe COVID-19: the COALITION II randomised clinical trial. Lancet, 397(10274), 605-612. doi:10.1016/S0140-6736(21)00149-5.

Schünemann, H.J., Zhang, Y., & Oxman, A.D. (2019). Expert evidence in guidelines group. Distinguishing opinion from evidence in guidelines. British Medical Journal, 366, l4606.

Sciskalska, M., Ołdakowska, M., Marek, G., & Milnerowicz, H. (2020). Changes in the activity and concentration of superoxide dismutase isoenzymes (Cu/Zn SOD, MnSOD) in the blood of healthy subjects and patients with acute pancreatitis. Antioxidants, 9(948), 1-16. doi:10.3390/antiox9100948.

Wallin, B., Rosengren, B., Shertzer, H.G., & Camejo, G. (1993). Lipoprotein oxidation and measurement of thiobarbituric acid reacting substances formation in a single microtiter plate: its use for evaluation of antioxidants. Analytical Biochemistry, 208(1), 10-15.

Wuyt, A.K., Nguelefack-Mbuyo, E.P., Fofie, C.K., & Nguelefack, T.B. (2023). The methanol extract of Ceiba pentandra reverses monosodium glutamate-induced cardiometabolic syndrome in rats via the regulation of dyslipidemia, inflammation, oxidative stress, and insulin sensitization. Heliyon, 9(2023) e13689, 1-16.

Yang, L., Gao, Y., Gong, J., Peng, L., El-Seedi, H.R., Farag, M.A., Zhao, Y., & Xiao, J. (2023). A multifaceted review of monosodium glutamate effects on human health and its natural remedies. Food Materials Research, 3, 16. https://doi.org/10.48130/FMR-2023-0016.




DOI: https://doi.org/10.14421/biomedich.2024.131.43-50

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Anthony Cemaluk Chinedum Egbuonu, Prince Ogochukwu Alaebo, Udumma Nsofor Onuoha, Chinomso Juliet Njoku, Obioma Benedeth Eze, Francisca Ugochi Odoemelam, Michael Eberechukwu Edum, Ojichukwu Boniface Obi, Mmesoma Joy Ukaegbu, Sandra Uchechi Nwaogwugwu, Marvellous Chinonso Orji, Clara Ngozika Ndukwe, Prosper Opara, Chinagorom Oyoyo, Chika Blessing Joe-Eme, Cheluchiaka Jecinta Okwoigwe



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC