Physicochemical, Antimicrobial, Lethality and In Vitro Antioxidant Profiles of Johnu Tisane: A Coffee (Coffea Arabica) Leaf Decoction Formula

Anthony Cemaluk Chinedum Egbuonu, Prince Ogochukwu Alaebo, Udumma Nsofor Onuoha, Chinomso Juliet Njoku, Chiemeziem Adanma Obike, Susan Ogechi Nlemadim, Blessing Ifeoma Chukwu, Sopuruchi Mary-Augusta Iwejuo, Onyedikachi Glory Amaechi, Victor Ifechukwu Obiefuna, Bessing Nmesomachi Onuoha, DivineTreasure Nzubechukwu Okoli, Precious Chinonso Nwokeoma, Chukwubuikem Eze

Abstract


Coffee leaves-based tea has relevance in ethno-medications due to its rich phyto-constituents-related diverse pharmacologic activities. Jonhu tisane, a typical Coffea arabica leaf decoction has no supporting scientific basis amidst reported location, processing and specie-related variations. This investigated physicochemical, antimicrobial, lethality and in-vitro antioxidant profiles of Johnu tisane by acceptable methods. Results recorded moisture (92.26 %), ash (0.65 %), unsaponified matter (1.46 mg/100 g), free fatty acid (0.56 mgKOH/g), acid value (1.12 mgKOH/g), potential hydrogen (6.85), lethal concentration (1000 ppm) and concentration-dependent antimicrobial activity. Anti-oxidation results revealed total antioxidant capacity, ferric reducing antioxidant power, nitric oxide, hydrogen peroxide and 2, 2-diphynyl-1-picrylhydrazyl scavenging activities increased concentration-dependently compared to standard. Thus, Johnu tisane demonstrated low minerals and keeping quality; requisite physicochemical mix for consumption and bioactivity; high safety margin; antimicrobial potency; and requisite anti-oxidation capacity for in-vivo antioxidant role. These provided scientific support for its ethno-medicinal uses. They underscored the need to elucidate its pharmacologically active compounds; mechanistic roles in animal models; and the impact of ash to moisture mix variation on potential hydrogen, microbial and antimicrobial activities in relation to shelf life, bioactivity and in vivo anti-oxidative roles for novel insights on preserving sample quality, safety, bioactivity and in-vivo anti-oxidative outcomes.

Keywords


In-vivo anti-oxidative outcomes and roles; Johnu tisane; Requisite physicochemical mix; Requisite anti-oxidant capacity; Rich phyto-constituents-related diverse pharmacologic activities

Full Text:

PDF

References


Adesegun, S.A., Orabueze, C.I., & Coker, H.A.B. (2017). Antimalarial and antioxidant potentials of extract and fractions of aerial part of Borreria ocymoides DC (Rubiaceae). Pharmacognosy Journal, 9(4), 534-540.

Akinpelu, D.A., Abioye, E.O., Aiyegoro, O.A., Akinpelu, O.F., & Okoh, A.I. (2015). Evaluation of antibacterial and antifungal properties of Alchornea laxiflora (Benth.) Pax. & Hoffman. Evidence-Based Complementary and Alternative Medicine, Volume 2015(Article ID 684839), 1-6. http://dx.doi.org/10.1155/2015/684839.

Arsenoaia, V.N., Rosca, G.R., Cârlescu, P., Baetu, M., Ratu, R., Velescu, I., & Tenu, I. (2023). Drying process modeling and quality assessments regarding an innovative seed dryer. Agriculture, 13, 328. https://doi.org/10.3390/agriculture13020328.

Aruna, S.O. (2023). Chemical composition analysis of palm oils in Ijebu-ode, Ogun State. African Journal of Chemical Education, AJCE, 13(1), 91-111.

Benzie, I.F.F., & Strain, J.J. (1999). Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology, 299, 15-27.

Campa, C., & Petitvallet, A. (2017). Beneficial compounds from coffee leaves. In: Achieving sustainable cultivation of coffee, ed. P. Lashermes. Cambridge: Burleigh Dodds Science Publishing Limited.

Chen, X., Mu, K., & Kitts, D.D. (2019). Characterization of phytochemical mixtures with inflammatory modulation potential from coffee leaves processed by green and black tea processing methods. Food Chemistry, 271, 248–258.

Ding, J., Mei, S., Gao, L., Wang, Q., Ma, H., & Chen, X. (2022). Tea processing steps affect chemical compositions, enzyme activities, and antioxidant and anti-inflammatory activities of coffee leaves. Food Frontiers, 3(3), 505-516. https://doi.org/10.1002/fft2.136.

Ebi, G.C., & Ofoefule, S.I. (1997) Investigating into Folkloric Antimicrobial Activities of Landolphia owerrience. Phytotherapy Research, 11, 149-151.

Egbuonu, A.C.C., Aguguesi, R.G., Samuel, R., Ojunkwu, O., Onyenmeri, F., & Uzuegbu, U. (2015). Some physicochemical properties of the petroleum ether-extracted watermelon (Citrullus lanatus) seed oil. Asian Journal of Scientific Research, 8(4), 519-525. doi: 10.3923/ajsr.2015.519-525.

Egbuonu, A.C.C., Harry, E.M., & Orji, I.A. (2016). Comparative proximate and antibacterial properties of milled Carica papaya (pawpaw) peels and seeds. British Journal of Pharmaceutical Research (Journal of Pharmaceutical Research International), 12(1), 1-8. doi 10.9734/BJPR/2016/26808.

Egbuonu, A.C.C., & Nzewi D.C. (2016). Influence of blanching on some nutrient and anti-nutrient compositions of bitter yam (Dioscorea dumetorum). British Journal of Applied Science and Technology, 16(2), 1-8. doiDOI: 10.9734/BJAST/2016/25650.

Egbuonu, A.C.C., Nzewi, D.C., & Egbuonu, O.N.C. (2014). Effect of soaking prior to oven-drying on some nutrient and anti-nutrient properties of bitter yam (Dioscorea dumetorum). Journal of Nutrition and Food Science, 4, 280. 1-4. doi:10.4172/2155-9600.1000280.

El-hashash, M.M., Abdel-Gawad, M.M., El-Sayed, M.M., Sabry, W.A., Abdel-Hameed, E.S.S., & Abdel-Lateef, E.E.S. (2010). Antioxidant properties of methanolic extracts of the leaves of seven Egyptian Cassia species. Acta Pharmaceutica, 60(3), 361-367.

Flore, N.A., Cédric, C.D., Roger, K.B.L.P., Félicité, T.L., Louise, A.M., Martin, T.N., & Emmanuel, B.N.L. (2023). Plant biodiversity and structure of robusta coffee (Coffea canephora var. robusta) agroforests in Cameroon. Open Journal of Forestry, 13, 225-241. https://doi.org/10.4236/ojf.2023.132014.

Frempong, T.F., Badu, M., Boamah, V.E., Amponsah, I.K., Agbemade, B., Boateng, R.A., & Boadi, N.O. (2021). Phenolic content, antioxidant properties and antimicrobial activities of the extracts from Funtumia africana and Funtumia elastica. Chemistry Africa, 4 (3), 503-512.

GBD 2019 Antimicrobial Resistance Collaborators (2022). Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of disease study 2019. Lancet, 400, 222-248.

Gyamfi, M.A., Yonamine, M., & Amya, Y. (1999). Free-radical scavenging action of medical herbs from Ghana: Thonninga sanguine on experimentally-induced liver injuries. General Pharmacology, 32, 661-667.

Ifemeje, J., Ifemeje, M., Egbuna, C., & Olisah, M. (2020). Proximate, phytochemical and antioxidant mineral compositions of four different brands of tea. Advanced Journal of Graduate Research, 8(1), 1-7. doi: 10.21467/ajgr.8.1.1-7.

Iwalewa, E.O., Adewale, I.O., Aiwo, B.J., Arogundabe, T., Osinowo, A., Daniyan, O.M., & Adetogun, G.E. (2008). Effects of Harungana madagascariensis stem bark extract on the antiodixant markers in alloxan induced diabetic and carrageenan induced inflammatory disorders in rats. Journal of Complementary and Integrative Medicine, 5(1), 1-18.

Kumar, P., Chand, S., & Maurya, P.K. (2016). Quercetin-modulated erythrocyte membrane sodium-hydrogen exchanger during human aging. Correlation with atpase’s. Archives of Physiology and Biochemistry, 122,141-147.

Malecka, M. (2002). Antioxidant properties of the unsaponifiable matter isolated from tomato seeds, oat grains and wheat germ oil. Food Chemistry, 79(3), 327-330. https://doi.org/10.1016/S0308-8146(02)00152-8.

Marcocci, L, Maguire, J.J., Droylefaix, M.T., & Packer, L. (1994). The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochemical and Biophysical Research Communications, 201(2), 748-755.

Mbinda, W., & Musangi, C. (2019). Antioxidant activity, total phenolic and total flavonoid contents of stem back and root methanolic extracts of Calotropis procera. The Journal of Phytopharmacology, 8(4), 161-166.

Mensor, L.L., Fabio, S.M., Gilda, G.L., Alexandre, S.R., Tereza, C.D., Cintia, S.C., & Suzana, G.L. (2001). Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127-130.

Monteiro, A., Colomban, S., Azinheira, H.G., Guerra-Guimarães, L., Silva, M.D., Navarini, L., & Resmini, M. (2020). Dietary antioxidants in coffee leaves: impact of botanical origin and maturity on chlorogenic acids and xanthones. Antioxidants, 9(6), 1-16. doi:10.3390/antiox9010006.

Neha, K., Haider, M.R., Pathak, A., & Yar, M.S. (2019). Medicinal prospects of antioxidants. A review. European Journal of Medicinal Chemistry, 178, 687-704.

Nwachoko, N., Akuru, U.B, Green, I.A., Kpaanadee, R.M., Odinga, T., & Egbunefu, C.O. (2023). Physicochemical properties and fatty acid composition of freshly prepared palm oil. African Journal of Biochemistry Research, 17(2), 9-14. doi:10.5897/AJBR2023.1167.

Obasi, N.L., Ejikeme, P.M., & Egbuonu, A.C.C. (2011). Antimicrobial and phytochemical activity of methanolic extract and its fractions of Jatropha curcas Linn (Eurphorbiaceae) stem bark. African Journal of Pure and Applied Chemistry, 5(5), 92-96.

Onwuka, G.I. (2005). Food analysis and instrumentation theory & practices. Napthali prints. A division of HG support Lagos, Nigeria.1-219.

Opara, C.I., Egbuonu, A.C.C., & Obike, C.A. (2017). Assessment of proximate, vitamins, minerals and antinutrients compositions of unprocessed Vigna aconitifolia (moth bean) seeds. Archives of Current Research International, ACRI, 11(2), 1-7. doi:10.9734/ACRI/2017/37846.

Park, Y.W. (1996). Determination of moisture and ash contents of foods. Handbook of Food Analysis. Leo M.L. Nollet (ed). Marcel Dekker, Inc., New York. pp. 59-92

Pearson, D. (1976). The chemical Analysis of foods 7th edu. Churchhill Livingstone. Edinburgh, London.

Ponnampalam, E.N., Kiani, A., Santhiravel, S., Holman, B.W.B., Lauridsen, C., & Dunshea, F.R. (2022).The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: antioxidant action, animal health, and product quality - invited review. Animals, 12, 3279.

Ruch, R.J., Cheng, S.J., & Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003-1008. doi:10.1093/carcin/10.6.1003.

Sarah, Q.S., Anny, F.C., & Misbahuddin, M. (2017). Brine shrimp lethality assay. Bangladesh Journal of Pharmacology, 12(2), 186-189.

Singh, B., Singh, J.P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International, 132, 109114.

Upadhyay, R., Mohan, & Rao, L.J. (2013). An outlook on chlorogenic acids - occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition, 53(9), 968-984.

Tsedale, T, Yalemtsehay, M., Tegenu, G., Mesfin, R., Bhagwan, S.C., Estifanos, E., Ahmed, M.M., & Hassen, M. (2020). In vitro antibacterial and antioxidant activities of roasted and green coffee beans originating from different regions of Ethiopia. Hindawi International Journal of Food Science, Volume 2020(Article ID 8490492), 1-8. https://doi.org/10.1155/2020/8490492.

Uroko, R.I., Chukwu, C.N., Aaron, C.F., Chidozie, U.B., Akachukwu, D., & Atuh, N.O. (2022). Phytochemical compositions and antioxidant properties of combined Funtumia africana and Abutilon mauritianum extract (CFAE). Biology, Medicine, & Natural Product Chemistry, 11(2), 111-118. doi: 10.14421/biomedich.2022.112.111-118.

Umamaheswari, M., & Chatterjee T. K. (2007). In vitro antioxidant activities of the fractions of Coccinnia grandis L. leaf extract. African Journal of Traditional Complementary and Alternative Medicines, 5(1), 61-73.

Vijayakumar, S., Sakthivel, M., Murugesan, S., & Narmada, K. (2019). Potential of hydrogen (pH) to monitor the multi temporal: A case study of Nagapattinam district. Journal of Applied Science and Computations, JASC, 6(1), 1137-1152.

Vona, R., Pallotta, L., Cappelletti, M., Severi, C., & Matarrese, P. (2021). The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants, 10(2), 201. https://doi.org/10.3390/antiox10020201.

Yen, G.C., & Chen, H.Y. (1995). Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1), 27-32.




DOI: https://doi.org/10.14421/biomedich.2024.131.99-107

Refbacks

  • There are currently no refbacks.




Copyright (c) 2024 Anthony Cemaluk Chinedum Egbuonu, Prince Ogochukwu Alaebo, Udumma Nsofor Onuoha, Chinomso Juliet Njoku, Chiemeziem Adanma Obike, Susan Ogechi Nlemadim, Blessing Ifeoma Chukwu, Sopuruchi Mary-Augusta Iwejuo, Onyedikachi Glory Amaechi, Victor Ifechukwu Obiefuna, Bessing Nmesomachi Onuoha, DivineTreasure Nzubechukwu Okoli, Precious Chinonso Nwokeoma, Chukwubuikem Eze



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC