Antibacterial Potency and Physicochemical Profiles of Eucalyptus pellita Leaf Waste Essential Oil from PT Surya Hutani Jaya, East Kalimantan
Abstract
Keywords
Full Text:
PDFReferences
Aldoghaim, F. S., Flematti, G. R., & Hammer, K. A. (2018). Antimicrobial activity of several cineole-rich western australian eucalyptus essential oils. Microorganisms, 6(4). https://doi.org/10.3390/microorganisms6040122
Aleksic Sabo, V., & Knezevic, P. (2019). Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. In Industrial Crops and Products (Vol. 132, pp. 413–429). Elsevier B.V. https://doi.org/10.1016/j.indcrop.2019.02.051
Ãlvarez-MartÃnez, F. J., Barrajón-Catalán, E., Herranz-López, M., & Micol, V. (2021). Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. In Phytomedicine (Vol. 90). Elsevier GmbH. https://doi.org/10.1016/j.phymed.2021.153626
Aoki, Y., Van Trung, N., & Suzuki, S. (2019). Impact of piper betle leaf extract on grape downy mildew: Effects of combining 4-allylpyrocatechol with eugenol, α-pinene or β-pinene. Plant Protection Science, 55(1), 23–30. https://doi.org/10.17221/53/2018-PPS
Bachir, R. G., & Benali, M. (2012). Antibacterial activity of the essential oils from the leaves of Eucalyptus globulus against Escherichia coli and Staphylococcus aureus. Asian Pacific Journal of Tropical Biomedicine, 2(9), 739–742. https://doi.org/10.1016/S2221-1691(12)60220-2
Boukhatem, M. N., Boumaiza, A., Nada, H. G., Rajabi, M., & Mousa, S. A. (2020). Eucalyptus globulus essential oil as a natural food preservative: Antioxidant, antibacterial and antifungal properties in vitro and in a real food matrix (orangina fruit juice). Applied Sciences (Switzerland), 10(16). https://doi.org/10.3390/app10165581
Dawood, M. A. O., El Basuini, M. F., Zaineldin, A. I., Yilmaz, S., Hasan, M. T., Ahmadifar, E., El Asely, A. M., Abdel-Latif, H. M. R., Alagawany, M., Abu-Elala, N. M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. In Pathogens (Vol. 10, Issue 2, pp. 1–38). MDPI AG. https://doi.org/10.3390/pathogens10020185
El Atki, Y., Aouam, I., El Kamari, F., Taroq, A., Nayme, K., Timinouni, M., Lyoussi, B., & Abdellaoui, A. (2019). Antibacterial activity of cinnamon essential oils and their synergistic potential with antibiotics. Journal of Advanced Pharmaceutical Technology and Research, 10(2), 63–67. https://doi.org/10.4103/japtr.JAPTR_366_18
Guimarães, A. C., Meireles, L. M., Lemos, M. F., Guimarães, M. C. C., Endringer, D. C., Fronza, M., & Scherer, R. (2019). Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 24(13). https://doi.org/10.3390/molecules24132471
Hii, S. Y., Ha, K. S., Ngui, M. L., Ak Penguang, S., Duju, A., Teng, X. Y., & Meder, R. (2017). Assessment of plantation-grown Eucalyptus pellita in Borneo, Malaysia for solid wood utilisation. Australian Forestry, 80(1), 26–33. https://doi.org/10.1080/00049158.2016.1272526
Hou, J., Zhang, Y., Zhu, Y., Zhou, B., Ren, C., Liang, S., & Guo, Y. (2019). Α-Pinene induces apoptotic cell death via caspase activation in human ovarian cancer cells. Medical Science Monitor, 25, 6631–6638. https://doi.org/10.12659/MSM.916419
Insuan, W., & Chahomchuen, T. (2020). Chemical composition and antimicrobial activity of essential oil extracted from eucalyptus citriodora leaf. Microbiology and Biotechnology Letters, 48(2), 148–157. https://doi.org/10.4014/mbl.1912.12016
Julianus Sohilait, H. (2016). GC/GC-MS Analysis, Isolation and Identification of Bark Essential Oil Components from <i>Cinnamomum culilawan</i>, Blume. American Journal of Applied Chemistry, 4(4), 157. https://doi.org/10.11648/j.ajac.20160404.16
Kartiko, A. B., Putri, A. S., Rosamah, E., & Kuspradini, H. (2021). Evaluation of Antibacterial Activity and Physico-Chemical Profiles of Eucalyptus pellita Essential Oil from East Kalimantan.
Khammassi, M., Polito, F., Amri, I., Khedhri, S., Hamrouni, L., Nazzaro, F., Fratianni, F., & De Feo, V. (2022). Chemical Composition and Phytotoxic, Antibacterial and Antibiofilm Activity of the Essential Oils of Eucalyptus occidentalis, E. striaticalyx and E. stricklandii. Molecules, 27(18). https://doi.org/10.3390/molecules27185820
Kuspradini, H., Putri, A. S., Egra, S., & Yanti. (2019). Short communication: In vitro antibacterial activity of essential oils from twelve aromatic plants from East Kalimantan, Indonesia. Biodiversitas, 20(7), 2039–2042. https://doi.org/10.13057/biodiv/d200733
Kuspradini, H., Sinta Putr, A., & Mitsunaga, T. (2018). Chemical Composition, Antibacterial and Antioxidant Activities of Essential Oils of Dryobalanops lanceolata Burck. Leaf. Research Journal of Medicinal Plants, 12(1), 19–25. https://doi.org/10.3923/rjmp.2018.19.25
Limam, H., Ben Jemaa, M., Tammar, S., Ksibi, N., Khammassi, S., Jallouli, S., Del Re, G., & Msaada, K. (2020). Variation in chemical profile of leaves essential oils from thirteen Tunisian Eucalyptus species and evaluation of their antioxidant and antibacterial properties. Industrial Crops and Products, 158. https://doi.org/10.1016/j.indcrop.2020.112964
McEwan, A., Marchi, E., Spinelli, R., & Brink, M. (2020). Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. In Journal of Forestry Research (Vol. 31, Issue 2, pp. 339–351). Northeast Forestry University. https://doi.org/10.1007/s11676-019-01019-3
Miguel, M., Gago, C., Antunes, M., Lagoas, S., Faleiro, M., MegÃas, C., Cortés-Giraldo, I., Vioque, J., & Figueiredo, A. (2018). Antibacterial, Antioxidant, and Antiproliferative Activities of Corymbia citriodora and the Essential Oils of Eight Eucalyptus Species. Medicines, 5(3), 61. https://doi.org/10.3390/medicines5030061
Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: an updated review. In Molecules (Vol. 25, Issue 20). MDPI AG. https://doi.org/10.3390/molecules25204711
Rafiei, V., Ruffino, A., Persson Hodén, K., Tornkvist, A., Mozuraitis, R., Dubey, M., & Tzelepis, G. (2022). A Verticillium longisporum pleiotropic drug transporter determines tolerance to the plant host β-pinene monoterpene. Molecular Plant Pathology, 23(2), 291–303. https://doi.org/10.1111/mpp.13162
DOI: https://doi.org/10.14421/biomedich.2023.122.693-697
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Wartomo, Farida Aryani, Muhammad Fikri Hernandi, Erna Rositah, Sri Ngapiyatun, Nur Maulida Sari
Biology, Medicine, & Natural Product Chemistry |