Phytochemicals and Larvicidal Activity of Sonneratia alba Root Extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali

Made Dharmesti Wijaya, Anak Agung Gede Indraningrat, I Gede Yoga Ayuning Kirtanayasa

Abstract


Dengue is an endemic disease with a high incidence in almost all Southeast Asian countries, including Indonesia. This infectious disease is caused by a virus transmitted by the bite of Aedes aegypti mosquito as the main vector. Effective mosquito vector control is a crucial step in stopping the spread of this virus. Of the several methods available, the use of larvicides is considered one of the most successful treatments in reducing the number of mosquito vectors. However, widely used synthetic larvicides can have undesirable side effects on the environment and non-target organisms including human health. The aim of this study was to discover a new biolarvicide from natural materials that is relatively safer. In this study, the biolarvicidal activity of mangrove plant species that are commonly found in Ngurah Rai Mangrove Forest Bali was tested, namely Sonneratia alba. Mangrove root simplicia was extracted by reflux method using three different solvents namely methanol, chloroform, and n-hexane. The content of compounds in the extract were analyzed using GC/MS method. The larvicidal activity of the extracts were tested on A. aegypti instar III/IV larvae with concentrations of 0.1, 1, 10, 100, and 1000 ppm for 24 hours. Subsequently, the average value of larval mortality was used to calculate the LC50 of each extract. The results showed that S. alba methanol extract provided the best larvicidal activity compared to chloroform and n-hexane extracts, with mortality of 69.33% at a concentration of 1000 ppm and LC50 of 1265 ppm. GC-MS analysis showed that the methanol extract of S. alba contained five dominant compounds namely Methyl 2-hydroxy-eicosanoate (19.55%); 4H-1-Benzopyran-4-one, 3,5-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-7-methoxy (16.48%); 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol (10.06%); Benzamide, N-[4-(2-naphtyl)-2-thiazolyl]- (9.40%); and 2,3-Dihydro-3,5-bis(3-methoxyphenyl)-1H-inden-1-one (6.52%). The results of this study provide a preliminary result on larvicide activity from mangrove S. alba in order to develop bio larvicides from nature which is safer for human health and environment.

Keywords


Larvicidal Activity; Phytochemicals, Roots; Sonneratia alba

Full Text:

PDF

References


Abbott, W. S. (1925). A Method of Computing the Effectiveness of an Insecticide. Journal of Economic Entomology, 18(2), 265-267. doi:10.1093/jee/18.2.265a

Al-Rashidi, H. S., Mahyoub, J. A., Alghamdi, K. M., & Mohammed Al-Otaibi, W. (2022). Seagrasses extracts as potential mosquito larvicides in Saudi Arabia. Saudi Journal of Biological Sciences, 29(12), 103433. doi:https://doi.org/10.1016/j.sjbs.2022.103433

Alexander, A., Dayou, J., Abdullah, S., & Chong, K. P. (2017). The changes of oil palm roots cell wall lipids during pathogenesis of Ganoderma boninense. IOP Conference Series: Earth and Environmental Science, 77(1), 012014. doi:10.1088/1755-1315/77/1/012014

Ali, M. S., Ravikumar, S., & Beula, J. M. (2012). Spatial and temporal distribution of mosquito larvicidal compounds in mangroves. Asian Pacific Journal of Tropical Disease, 2(5), 401-404. doi:https://doi.org/10.1016/S2222-1808(12)60087-5

Aljameeli, M. (2023). Larvicidal effects of some essential oils against Aedes aegypti (L.), the vector of dengue fever in Saudi Arabia. Saudi J Biol Sci, 30(2), 103552. doi:10.1016/j.sjbs.2022.103552

Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., . . . Bouyahya, A. (2022). Health Benefits and Pharmacological Properties of Stigmasterol. Antioxidants (Basel), 11(10). doi:10.3390/antiox11101912

Cucunawangsih, & Lugito, N. P. H. (2017). Trends of Dengue Disease Epidemiology. Virology (Auckl), 8, 1178122X17695836. doi:10.1177/1178122X17695836

Dahibhate, N. L., Saddhe, A. A., & Kumar, K. (2019). Mangrove Plants as a Source of Bioactive Compounds: A Review. The Natural Products Journal, 9(2), 86-97. doi:10.2174/2210315508666180910125328

Das, M., & Himaja, M. (2014). Phytochemical Screening, GC-MS Analysis and Biological Activitys of Ipomoea Eriocarpa Leaf Extracts. International Journal of Pharmacy and Pharmaceutical Sciences, 6(4). Retrieved from https://innovareacademics.in/journal/ijpps/Vol6Issue4/9288.pdf

de Souza Wuillda, A. C. J., Campos Martins, R. C., & Costa, F. d. N. (2019). Larvicidal Activity of Secondary Plant Metabolites in Aedes aegypti Control: An Overview of the Previous 6 Years. Natural Product Communications, 14(7), 1934578X19862893. doi:10.1177/1934578x19862893

Djiappi-Tchamen, B., Nana-Ndjangwo, M. S., Nchoutpouen, E., Makoudjou, I., Ngangue-Siewe, I. N., Talipouo, A., . . . Antonio-Nkondjio, C. (2022). Aedes Mosquito Surveillance Using Ovitraps, Sweep Nets, and Biogent Traps in the City of Yaound, Cameroon. Insects, 13(9). doi:10.3390/insects13090793

El-Rafie, H., Mohammed, R., Hamed, M., Ibrahim, G. E., & Abou Zeid, A. H. (2016). Phytochemical and biological studies of total ethanol and petroleum ether extracts of Terminalia bentzoe (L.) leaves. 8, 592-603.

Gade, S., Rajamanikyam, M., Vadlapudi, V., Nukala, K. M., Aluvala, R., Giddigari, C., . . . Upadhyayula, S. M. (2017). Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim Biophys Acta Gen Subj, 1861(3), 541-550. doi:10.1016/j.bbagen.2016.11.044

George, L., Lenhart, A., Toledo, J., Lazaro, A., Han, W. W., Velayudhan, R., . . . Horstick, O. (2015). Community-Effectiveness of Temephos for Dengue Vector Control: A Systematic Literature Review. PLoS Negl Trop Dis, 9(9), e0004006. doi:10.1371/journal.pntd.0004006

Ghosh, A., Chowdhury, N., & Chandra, G. (2012). Plant extracts as potential mosquito larvicides. Indian J Med Res, 135(5), 581-598. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22771587

Guo, C., Zhou, Z., Wen, Z., Liu, Y., Zeng, C., Xiao, D., . . . Yang, G. (2017). Global Epidemiology of Dengue Outbreaks in 19902015: A Systematic Review and Meta-Analysis. Frontiers in Cellular and Infection Microbiology, 7(317). doi:10.3389/fcimb.2017.00317

Gupta, A., Rijhwani, P., Pahadia, M. R., Kalia, A., Choudhary, S., Bansal, D. P., . . . Jat, R. K. (2021). Prevalence of Dengue Serotypes and Its Correlation With the Laboratory Profile at a Tertiary Care Hospital in Northwestern India. Cureus, 13(5), e15029. doi:10.7759/cureus.15029

Harapan, H., Michie, A., Mudatsir, M., Sasmono, R. T., & Imrie, A. (2019). Epidemiology of dengue hemorrhagic fever in Indonesia: analysis of five decades data from the National Disease Surveillance. BMC Research Notes, 12(1), 350. doi:10.1186/s13104-019-4379-9

Jing, Q., & Wang, M. (2019). Dengue epidemiology. Global Health Journal, 3(2), 37-45. doi:https://doi.org/10.1016/j.glohj.2019.06.002

Karthi, S., Uthirarajan, K., Manohar, V., Venkatesan, M., Chinnaperumal, K., Vasantha-Srinivasan, P., & Krutmuang, P. (2020). Larvicidal Enzyme Inhibition and Repellent Activity of Red Mangrove Rhizophora mucronata (Lam.) Leaf Extracts and Their Biomolecules Against Three Medically Challenging Arthropod Vectors. Molecules, 25(17). doi:10.3390/molecules25173844

Morgan, L. V., Petry, F., Scatolin, M., de Oliveira, P. V., Alves, B. O., Zilli, G. A. L., . . . Mller, L. G. (2021). Investigation of the anti-inflammatory effects of stigmasterol in mice: insight into its mechanism of action. Behav Pharmacol, 32(8), 640-651. doi:10.1097/fbp.0000000000000658

Pavela, R., Maggi, F., Iannarelli, R., & Benelli, G. (2019). Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Tropica, 193, 236-271. doi:https://doi.org/10.1016/j.actatropica.2019.01.019

Pradeepa, P., K.Subalakshmi, Saranya, A., Dinesh, P., Raj, V. A., & Ramanathan, T. (2015). Milky Mangrove Excoecaria agallocha L. Plant as a source for potential mosquito larvicides (Vol. Volume: 5): Issue: 3.

Rahmania, N., Herpandi, H., & Rozirwan, R. (2018). PHYTOCHEMICAL TEST OF MANGROVE Avicennia alba, Rhizopora apiculata AND Sonneratia alba FROM MUSI RIVER ESTUARY, SOUTH SUMATERA. BIOVALENTIA: Biological Research Journal, 4(2), 8-15. doi:10.24233/BIOV.4.2.2018.116

Reef, R., & Lovelock, C. (2014). Regulation of water balance in Mangroves. Annals of botany, 115. doi:10.1093/aob/mcu174

Wellekens, K., Betrains, A., De Munter, P., & Peetermans, W. (2020). Dengue: current state one year before WHO 20102020 goals. Acta Clinica Belgica, 1-9. doi:10.1080/17843286.2020.1837576

WHO. (2005). Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Geneva, Switzerland: World Health Organization

WHO. (2020). Dengue and severe dengue. Retrieved from https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Retrieved 14 March 2021, from World Health Organization, https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

Wijaya, M. D., & Indraningrat, A. A. G. (2021). Antibacterial Activity of Mangrove Root Extracts from Ngurah Rai Mangrove Forest, Denpasar-Bali. 2021, 10(2), 5. doi:10.14421/biomedich.2021.102.117-121




DOI: https://doi.org/10.14421/biomedich.2023.122.499-505

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Made Dharmesti Wijaya, Anak Agung Gede Indraningrat, I Gede Yoga Ayuning Kirtanayasa



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC