Phytochemical Analysis and Antibacterial Activity of Methanol and Ethyl Acetate Extracts of Detarium microcarpum Guill. & Perr.

Mubarak Muhammad Dahiru, AbudulAzeez Mumsiri Abaka, Susan Pwakangdi Artimas

Abstract


This research aimed to investigate the phytoconstituents and antibacterial effects of methanol and ethyl acetate stem bark extracts of Detarium microcarpum (DM). The phytochemicals were detected and quantified while the antibacterial activity against Escherichia coli, Staphylococcus aureus, and Salmonella typhi was established determining the zone of inhibition (ZI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). Phytochemical screening showed alkaloids (16.33% 0.88) were present in the methanol extract only while saponins and flavonoids were detected in concentrations of 31.00% 2.31 and 21.01% 2.33 respectively for the methanol extract and 21.67% 1.76 and 38.01% 1.16, for the ethyl acetate. The methanol extract exhibited the highest ZI on S. aureus (21.3 mm 1.11) with its least inhibition observed on E. coli (6.5 mm 0.77) while the ethyl acetate extract demonstrated the highest ZI on S. typhi (19.1 mm 2.01). S. typhi exhibited more sensitivity to DM extracts at the least concentrations of 12.5 mg/ml (methanol) and 25 mg/ml (ethyl acetate) while the MBC results showed that the 12.5 mg/ml and 25 mg/ml were the effective respective concentration for methanol and ethyl acetate extracts against S. typhi. Conclusively, DM exhibited an antibacterial effect against the test organisms with notable inhibitory and bactericidal effects.

Keywords


Antibacterial activity; Antimicrobial activity; Antibacterial resistance; Detarium microcarpum; Phytochemical analysis

Full Text:

PDF

References


Abdullahi, A. R., Malami, S., & Bichi, L. A. (2021). In vivo antiplasmodial activity of detarium microcarpum (fabaceae) stem bark extract. Thrita, 10(1), 1-9.

Aboshora, W., Lianfu, Z., Dahir, M., Qingran, M., Qingrui, S., Jing, L., Al-Haj, N. Q. M., & Ammar, A. (2014). Effect of extraction method and solvent power on polyphenol and flavonoid levels in Hyphaene thebaica L mart (Arecaceae)(Doum) fruit, and its antioxidant and antibacterial activities. Tropical Journal of Pharmaceutical Research, 13(12), 2057-2063.

Abubakar, I., & Usman, A. (2016). Phytochemical and antibacterial investigations of moringa (Moringa oleifera) leaf extract on selected bacterial pathogens. Journal of Microbiology and Antimicrobials, 8(5), 28-33.

Adhikari, B. (2021). Roles of alkaloids from medicinal plants in the management of diabetes mellitus. Journal of Chemistry, 2021, 1-10.

Ahad, B., Shahri, W., Rasool, H., Reshi, Z. A., Rasool, S., & Hussain, T. (2021). Medicinal plants and herbal drugs: An overview. Medicinal and Aromatic Plants: Healthcare and Industrial Applications, 1-40.

Akinde, O., & Taiwo, M. (2017). Emerging antibiotic resistance in africa; threat to healthcare delivery. MOJ Biology and Medicine, 1(4), 114-115.

Akinpelu, B. A., Igbeneghu, O. A., Awotunde, A. I., Iwalewa, E. O., & Oyedapo, O. O. (2014). Antioxidant and antibacterial activities of saponin fractions of Erythropheleum suaveolens (Guill. and Perri.) stem bark extract. Scientific Research and Essays, 9(18), 826-833.

Andrews, J. M. (2005). BSAC standardized disc susceptibility testing method (version 4). Journal of Antimicrobial Chemotherapy, 56(1), 60-76.

Biharee, A., Sharma, A., Kumar, A., & Jaitak, V. (2020). Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia, 146, 104720.

Biradar, Y. S., Jagatap, S., Khandelwal, K. R., & Singhania, S. S. (2008). Exploring of antimicrobial activity of Triphala MashiAn ayurvedic formulation. Evidence-Based Complementary and Alternative Medicine, 5(1), 107-113.

Biswas, B., Rogers, K., McLaughlin, F., Daniels, D., & Yadav, A. (2013). Antimicrobial activities of leaf extracts of guava (Psidium guajava L.) on two gram-negative and gram-positive bacteria. International journal of microbiology, 2013, 1-8.

Bouyahya, A., Dakka, N., Et-Touys, A., Abrini, J., & Bakri, Y. (2017). Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine, 10(8), 729-743.

Cheesbrough, M. (2002). Biochemical tests to identify bacteria. District laboratory practice in tropical countries, Part, 2, 63-70.

De, N. B., & Ifeoma, E. (2002). Antimicrobial effects of components of the bark extract of neem (Azadirachta indica A. J uss). Technology and Development, 8, 23-28.

Donadio, G., Mensitieri, F., Santoro, V., Parisi, V., Bellone, M. L., De Tommasi, N., Izzo, V., & Dal Piaz, F. (2021). Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics, 13(5), 1-23.

Elton, L., Thomason, M. J., Tembo, J., Velavan, T. P., Pallerla, S. R., Arruda, L. B., Vairo, F., Montaldo, C., Ntoumi, F., & Abdel Hamid, M. M. (2020). Antimicrobial resistance preparedness in sub-Saharan African countries. Antimicrobial Resistance & Infection Control, 9, 1-11.

Evans, W. C. (2009). Trease and Evans' pharmacognosy. Elsevier Health Sciences.

Fan, K., Ding, C.-F., Deng, S.-Y., Gao, W., Tan, B.-Y., Wu, H., Guo, Y., Song, J.-F., Zhang, L.-C., & Zhang, R.-P. (2022). Monoterpene indole N-oxide alkaloids from Tabernaemontana corymbosa and their antimicrobial activity. Fitoterapia, 158, 105178.

Fang, Z., Li, J., Yang, R., Fang, L., & Zhang, Y. (2020). A Review: The Triterpenoid Saponins and Biological Activities of Lonicera Linn. Molecules, 25(17), 3773.

George, B. P., Chandran, R., & Abrahamse, H. (2021). Role of phytochemicals in cancer chemoprevention: Insights. Antioxidants, 10(9), 1455.

Gomashe, A. V., Gulhane, P. A., Junghare, M. P., & Dhakate, N. A. (2014). Antimicrobial activity of Indian medicinal plants: Moringa oleifera and Saraca indica. International Journal of Current Microbiology and Applied Sciences, 3(6), 161-169.

Gupta, T., Kataria, R., & Sardana, S. (2022). A Comprehensive Review on Current Perspectives of Flavonoids as Antimicrobial Agent. Current Topics in Medicinal Chemistry, 22(6), 425-434.

Harborne, A. (1998). Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media.

Hossen, I., Hua, W., Ting, L., Mehmood, A., Jingyi, S., Duoxia, X., Yanping, C., Hongqing, W., Zhipeng, G., & Kaiqi, Z. (2022). Phytochemicals and inflammatory bowel disease: a review. Critical Reviews in Food Science and Nutrition, 60(8), 1321-1345.

Ibrahim, J., Abdullahi, J., & Sule, M. O. (2021). Phytochemical and Antimicrobial Screening of the Stem-Bark and Leaf Extracts of Detarium Microcarpum (Leguminosae). Central Asian Journal of Theoretical and Applied Science, 2(11), 130-138.

Jafaar, H. J., Isbilen, O., Volkan, E., & Sariyar, G. (2021). Alkaloid profiling and antimicrobial activities of Papaver glaucum and P. decaisnei. BMC Research Notes, 14, 1-7.

Ji, Y., Thomas, C., Tulin, N., Lodhi, N., Boamah, E., Kolenko, V., & Tulin, A. V. (2016). Charon mediates immune deficiencydriven PARP-1dependent immune responses in Drosophila. The Journal of Immunology, 197(6), 2382-2389.

Juc, M. M., Cysne Filho, F. M. S., de Almeida, J. C., Mesquita, D. d. S., Barriga, J. R. d. M., Dias, K. C. F., Barbosa, T. M., Vasconcelos, L. C., Leal, L. K. A. M., & Ribeiro, J. E. (2020). Flavonoids: biological activities and therapeutic potential. Natural product research, 34(5), 692-705.

Lar, P. M., Ojile, E. E., Dashe, E., & Oluoma, J. N. (2011). Antibacterial Activity on Moringa Oleifera Seed Extracts on Some Gram Negative Bacterial Isolates. African Journal of Natural Sciences, 14, 57-62.

Liu, Y., Cui, Y., Lu, L., Gong, Y., Han, W., & Piao, G. (2020). Natural indole-containing alkaloids and their antibacterial activities [https://doi.org/10.1002/ardp.202000120]. Archiv der Pharmazie, 353(10), 2000120. https://doi.org/https://doi.org/10.1002/ardp.202000120

Maillard, J.-Y., Bloomfield, S. F., Courvalin, P., Essack, S. Y., Gandra, S., Gerba, C. P., Rubino, J. R., & Scott, E. A. (2020). Reducing antibiotic prescribing and addressing the global problem of antibiotic resistance by targeted hygiene in the home and everyday life settings: A position paper. American Journal of Infection Control, 48(9), 1090-1099.

Malanovic, N., & Lohner, K. (2016). Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(5), 936-946. https://doi.org/https://doi.org/10.1016/j.bbamem.2015.11.004

Mu'Azu, A. B., Baba, Y. B., Matinja, A. I., & Bukar, I. A. (2022). Haematological and lipid studies of methanol stem bark extract of detarium microcarpum in rats. International Journal of Biomedical and Health Sciences, 17(2), 177-183.

Obadoni, B., & Ochuko, P. (2002). Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Global Journal of pure and applied sciences, 8(2), 203-208.

Prasathkumar, M., Anisha, S., Dhrisya, C., Becky, R., & Sadhasivam, S. (2021). Therapeutic and pharmacological efficacy of selective Indian medicinal plantsa review. Phytomedicine Plus, 1(2), 100029.

Qing, Z.-X., Yang, P., Tang, Q., Cheng, P., Liu, X.-B., Zheng, Y.-j., Liu, Y.-S., & Zeng, J.-G. (2017). Isoquinoline Alkaloids and Their Antiviral, Antibacterial, and Antifungal Activities and Structure-activity Relationship. Current Organic Chemistry, 21(18), 1920-1934. https://doi.org/10.2174/1385272821666170207114214

Rahayu, Y. Y. S., Araki, T., & Rosleine, D. (2020). Factors affecting the use of herbal medicines in the universal health coverage system in Indonesia. Journal of Ethnopharmacology, 260, 112974.

Sanusi, S. B., Lawal, S. M., Usman, A., Musa, F. M., Ardo, B., & Way, T. B. (2022). Phytochemical Analysis and Antibacterial Activity of Stem Bark Extracts of Detarium Microcarpum Against Bacteria Causing Gastrointestinal Tract Infections in Humans. Dutse Journal of Pure and Applied Sciences, 8(1b). https://doi.org/10.4314/dujopas.v8i1b.10

Song, F., Liu, D., Huo, X., & Qiu, D. (2022). The anticancer activity of carbazole alkaloids. Archiv der Pharmazie, 355(1), 2100277.

Talaiekhozani, A. (2013). Guidelines for quick application of biochemical tests to identify unknown bacteria. Account of Biotechnology Research (2013).

Tiwari, P., Kumar, B., Kaur, M., Kaur, G., & Kaur, H. (2011). Phytochemical screening and extraction: a review. Internationale pharmaceutica sciencia, 1(1), 98-106.

Tm, C., Pi, S. J., Negri, G., Rm, N., & Rz, M. (2022). Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. Toxin Reviews, 1-16.

Tong, C., Zou, W., Ning, W., Fan, J., Li, L., Liu, B., & Liu, X. (2019). Correction: Synthesis of DNA-guided silver nanoparticles on a graphene oxide surface: enhancing the antibacterial effect and the wound healing activity. RSC advances, 9(67), 39434-39434.

Ullah, R., Alqahtani, A. S., Noman, O. M. A., Alqahtani, A. M., Ibenmoussa, S., & Bourhia, M. (2020). A review on ethno-medicinal plants used in traditional medicine in the Kingdom of Saudi Arabia. Saudi Journal of Biological Sciences, 27(10), 2706-2718. https://doi.org/https://doi.org/10.1016/j.sjbs.2020.06.020

Wiegand, I., Hilpert, K., & Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature Protocols, 3(2), 163-175.

Wu, M., Ni, L., Lu, H., Xu, H., Zou, S., & Zou, X. (2020). Terpenoids and their biological activities from Cinnamomum: a review. Journal of Chemistry, 2020, 1-14.

Xie, Y., Yang, W., Tang, F., Chen, X., & Ren, L. (2015). Antibacterial Activities of Flavonoids: Structure-Activity Relationship and Mechanism. Current Medicinal Chemistry, 22(1), 132-149. https://www.ingentaconnect.com/content/ben/cmc/2015/00000022/00000001/art00012

Yan, Y., Li, X., Zhang, C., Lv, L., Gao, B., & Li, M. (2021). Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics, 10(3), 1-30.

Yang, M., Hao, Z., Wang, X., Zhou, S., Zhu, D., Yang, Y., Wei, J., Li, M., Zheng, X., & Feng, W. (2022). Neocornuside AD, Four Novel Iridoid Glycosides from Fruits of Cornus officinalis and Their Antidiabetic Activity. Molecules, 27(15), 4732.

Yang, W., Chen, X., Li, Y., Guo, S., Wang, Z., & Yu, X. (2020). Advances in pharmacological activities of terpenoids. Natural Product Communications, 15(3), 1934578X20903555.

Zheng, Z., Zhang, L., & Hou, X. (2022). Potential roles and molecular mechanisms of phytochemicals against cancer. Food & Function, 13(18), 9208-9225.




DOI: https://doi.org/10.14421/biomedich.2023.121.281-288

Refbacks

  • There are currently no refbacks.




Copyright (c) 2023 Mubarak Muhammad Dahiru, AbudulAzeez Mumsiri Abaka, Susan Pwakangdi Artimas



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC