Inhibitory Effect of Mammea africana on Alpha-Amylase and Alpha-Glucosidase Enzymes of Rats

Nwakaego Omonigho Ebong, Jude Efiom Okokon, Jesse Idakwoji

Abstract


Mammea africana Sabine (Guttiferae), a medicinal plant used traditionally in the treatment of diseases including diabetes was evaluated for effect on alpha-amylase and alpha-glucosidase enzymes in vivo. The stembark extract (30, 60 and 90 mg/kg) of M. africana were investigated in vivo for inhibitory effect on alpha-amylase and alpha-glucosidase enzymes using starch, sucrose and maltose as substrates. Acarbose was used as reference drug. The stembark extract caused significant (p<0.05) reduction in blood glucose levels of treated rats with the various substrates used. The results suggest that the stembark extract of M. africana have the potentials to inhibit alpha-amylase and alpha-glucosidase in rats.

Keywords


alpha-amylase; alpha-glucosidase; hypoglycaemia; Mammea africana

Full Text:

PDF

References


Adjanohoun JE, Aboubakar N, Dramane K, Ebot ME, Ekpere JA, Enoworock EG, Foncho D, Gbile ZO, Kamanyi A, Kamoukom, et al (1996). Traditional Medicine and Pharmacopeia- Contribution to Ethnobotanical and Floristic Studies in Cameroon. Porto-Novo, Benin: CNPMS. Pp 15.

Alongi M, Anese M (2018). Effect of coffee roasting on in vitro α-glucosidase activity: Inhibition and mechanism of action. Food Research International 111: 480-487.

Carpenter I, Mc Garry EJ, Scheimann F (1971). Extractives from Guttiferae. Part XXI. The isolation and structure of nine coumarins from the bark of Mammea africana G. Don. Journal of the Chemical Society 22: 3783-3789.

Carpenter I, Mc Garry EJ, Scheimann F (1970). The neoflavonoids and 4-alkylcoumarins from Mammea africana G. Don. Tetrahedron Letters 46: 3983-3986.

Chapius JC, Sordat B, Hostettman K (1988). Screening for cytotoxic activities of plants used in traditional medicine. Journal of Ethnopharmacology 23: 273-284.

Crichton EG, Waterman PG (1978). Dihydromammea c/ob: A new coumarin from the seed of Mammea africana. Phytochemistry 17: 1783-1786.

Dongmo AB, Azebaze AGB, Nguelefack TB. (2007). Vasodilator effect of the extracts and some coumarins from the stem bark of Mammea africana (Guttiferae). Journal of Ethnopharmacology 111: 329-334.

Esimone CO, Okonta JM, Ezugwu CO (2001). Blood sugar lowering effect of Anacardum occidentale leaf extract in experimental rabbit model. Journal of Natural Remedies 1: 60–63.

Funke I, Melzig MF (2005). Effect of different phenolic compounds on a-amylase activity: screening by microplate-reader based kinetic assay. Pharmazie 60(10):796–797.

Games DE (1972). Identification of 4-phenyl and 4-alkylcoumarins in Mammea americana, Mammea africana and Calophyllum ionophyllum by gas chromatography – mass spectrometry. Tetrahedron Letters 31: 3187-3190.

Gartlans JS, Key DB, Waterman PG, Mbi CN, Struhsaker TT (1980). Comparative study of the phytochemistry of two African rain forests. Biochemical Systematics Ecology 8: 401-422.

Gidado A, Watafua M, Sa’ad RS, Tagi HS, Abdullahi S (2019). Alpha-amylase, maltase and sucrase inhibitions by aqueous leaf extracts of Anacardium occidentale (Anacardiacea) and Piliostigma reticulatum (Caesalpiniaceae) in rats. Tropical Journal of Natural Product Research 3(6): 210-215.

Hutchinson LJ, Daziel JM (1958). Flora of West Tropical Africa, revised by RWJ Keay.Vol.1, part 2, 2nd edn, White Press, London. Pp. 393

Ibrahim MA, Koorbanally NA, Islam S (2014). Antioxidative activity and inhibition of key enzymes linked to Type 2 diabetes (α-glucosidase and α-amylase) by Khaya senegalensis. Acta Pharmaceutica 64: 311-324.

Ishnava KB and Metisariya DM (2018). In vitro study on α-amylase inhibitory activity of selected ethnobotanical plant extra its and its herbal formulations. International Journal of Pharmacognosy and Chinese Medicine 2(3): 000136.

Kalita D, Holm DG, LaBarbera DV, Petrash JM, Jayanty SS (2018). Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. PLoS ONE 13(1): e0191025.

Kalra S (2014). Alpha Glucosidase Inhibitors. The Journal of Pakistan Medical Association 64(4): 474-476.

Karakaya S, Gözcü S, Güvenalp Z, Özbek H, Yuca H, Dursunoğlu B,. Kazaz C, Kılıç CS (2018). “The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots.” Pharmaceutical Biology 56(1): 18-24.

Malik A, Ardalani H, Anam S, McNair LM, Kromphardt KJK, Frandsen RJN, Franzyk H, Staerk D, Kongstad KT (2020). Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 142: 104522.

Nguelefack-Mbuyo EP, Dimo T, Nguelefack TB, Azebaze AG, Dongmo AB, Kamtchouing P, Kamanyi A (2010). In vitro antioxidant activity of extracts and coumarins from the stem bark of Mammea africana Sabine. Journal of Complementary and Integrated Medicine 7(1): 1- 11.

Nguelefack-Mbuyo PE, Nguelefack TB, Dongmo AB (2008). Anti- hypertensive effects of the methanol/methylene chloride stem bark extract of Mammea africana in LNAME- induced hypertensive rats. Journal of Ethnopharmacology 117: 446-450.

Okokon JE, Antia BS, Osuji L, Udia PM (2007). Antidiabetic and hypolipidaemic activity of ethanolic stembark extract of Mammea africana. Journal of Pharmacology and Toxicology 2: 278-283.

Okokon JE, Antia BS (2007). Hypolipidaemic and cardioprotective activity of Mammea africana. Research Journal Medicinal Plants 1: 154-157.

Okokon JE, Bawo MB, Mbagwu HO (2016). Hepatoprotective activity of Mammea africana ethanol stem bark extract. Avicenna Journal of Phytomedicine 6(2): 248-259.

Okokon JE, Bawo MB (2014). Nephro-protective effect of Mammea africana against paracetamol induced kidney injury. Journal of Herbal Drugs 5: 45-54.

Okokon JE, Dar A, Choudhary MI (2012). Immunostimulatory, anticancer, and antileishmanial activities of Mammea africana from Nigeria. Journal of Natural Pharmaceuticals 3: 105-109.

Okokon JE, Davies K (2014). Psychopharmacological studies of Mammea africana stem bark extract. The Journal of Phytopharmacology 3: 204-213.

Okokon JE, Udokpoh AE, Essiet GA (2006). Antimalarial activity of Mammea africana. African Journal of Traditional Complementary and Alternative Medicines 3: 43-49.

Okokon JE, Umoh UF, Umoh EE, Etim EI (2010). Antiulcer and antidiarrhoeal activity of Mammea africana. Iranian Journal of Pharmacology and Therapeutics 9: 96-101.

Okokon JE, Umoh E, Umoh U (2009). Antiinflammatory and antinociceptive effects of ethanolic stembark extract of Mammea Africana. The Journal of Biomedical Research 12: 135-139.

Ortiz-Andrade RR, García-Jiménez S, Castillo-Espaňa P, Ramírez-Avíila G, Villalobos-Molina R, Estrada-Soto S (2007). Alpha-glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. Journal of Ethnopharmacology 109: 48-53.

Ouahouo BM, Asebaze AG, Meyer M, Bodo B, Fomum ZT, Ngengfack AE (2004). Cytotoxic and antimicrobial coumarins from Mammea africana. Annals of Tropical Medicine Parasitology 98: 737-739.

Proença C, Freitas M, Ribeiro D, Oliveira E, Sousa J, Tomé SM, Ramos MJ, Silva A, Fernandes PA, Fernandes E (2017). α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. Journal of Enzyme Inhibition and Medicinal Chemistry 32(1): 1216-1228.

Proença C, Ribeiro D, Freitas M, Fernandes E (2022). Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: a review. Critical Reviews in Food Science and Nutrition 62(12): 3137-3207

Raponda-Walker A, Sillans R (1961). Les plantes utiles du Gabon. Paris: Paul Lechevalier. Pp 469-478

Shirwaikar A, Rajendran K, Punitha ISR (2005). Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin nicotinamide induced Type 2 diabetic rats. Journal of Ethnopharmacology 93: 369-374.

Srisongkram T, Waithong S, Thitimetharoch T, Weerapreeyakul N (2022). Machine learning and in vitro chemical screening of potential α-amylase and α-glucosidase inhibitors from thai indigenous plants. Nutrients 14: 267.

Su J, Tang Z (2019). Effects of (-)-epigallocatechin gallate and quercetin on the activity and structure of α-amylase. Tropical Journal of Pharmaceutical Research 18(3): 585-590.

Tchamadeu MC, Dzeufiet PD, Nouga CC, Azebaze AG, Allard J, Girolami JP, Tack I, Kamtchouing P, Dimo T (2010). Hypoglycaemic effects of Mammea africana (Guttiferae) in diabetic rats. Journal of Ethnopharmacology 127(2): 368-372.

WHO (2011). Core medical equipment information. Available at http://whqlibdoc.who.int/hq/2011/WHO_HSS_EHT_DIM_11.03_eng.pdf. Accessed 3 June, 2020.

WHO (2016). Global Report on Diabetes. Geneva. 2016. https://www.who.int/publications/i/item/9789241565257. Accessed 7 June, 2020.

Yoshikawa M, Murakami T, Yashiro K, Matsuda H (1998). Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Chemical and Pharmaceutical Bulletin 46(8): 1339-1340.

Zhao DG, Zhou AY, Du Z, Zhang Y, Zhang K, Ma YY (2015). Coumarins with α-glucosidase and α-amylase inhibitory activities from the flower of Edgeworthia gardneri. Fitoterapia 107: 122-127.




DOI: https://doi.org/10.14421/biomedich.2022.112.175-180

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Nwakaego Omonigho Ebong, Jude Efiom Okokon, Jesse Idakwoji



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC