Detection of the Atherosclerotic PCSK9 gene Inhibitors Through in silico Method to Improve Targeted Therapy

Sabarinathan Sethuramalingam, Revathy Leena Ravi, Janet Rani Rajiah

Abstract


The PCSK9 is one of the most important marks for the evolution of therapeutic agents for atherosclerosis because its interaction with low-density lipoprotein receptors causes atherosclerosis. Protein-ligand interactions help us to understand the true mechanism of pharmacological action. This study seeks to identify the most powerful suppression options for PCSK9. Initially, the reported ACE inhibitors were included in pharmacophore modeling using PharmaGist. Next, ZINCPHARMER was used to screen the selected model against a ZINC database to identify putative drug candidates docked to the target protein to understand the interactions. The 10 best pharmacological candidates for PCSK9 with a binding energy of 9.8-8.2 kcal mol-1 were identified by molecular docking and their pharmacokinetic properties and oral bioavailability were evaluated. The (S) severalplant obtained chemicals have been discovered, including anti-hypersensitive drugs such as “Canadine, Hesperetin, and Labetalolâ€. According to Biochemistry, these compounds formed a stable “protein-ligand†complex. The (S) canadine PCSK9 complex had the lowest RMSD and was the most stable. Future in vitro studies could identify (S) canadin as a promising atherosclerosis inhibitor for the evolution of novel PCSK9 inhibitors.

Keywords


PCSK9; Therapeutics; ACE inhibitors; Protein – ligand; Docking

Full Text:

PDF

References


Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Andreadou, I., Iliodromitis, E. K., Lazou, A., Görbe, A., Giricz, Z., Schulz, R., & Ferdinandy, P. (2017). Effect of hypercholesterolaemia on myocardial function, ischaemia–reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. In British Journal of Pharmacology (Vol. 174, Issue 12). https://doi.org/10.1111/bph.13704

Attique, S. A., Hassan, M., Usman, M., Atif, R. M., Mahboob, S., Al-Ghanim, K. A., Bilal, M., & Nawaz, M. Z. (2019). A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. International Journal of Environmental Research and Public Health, 16(6), 1–17. https://doi.org/10.3390/ijerph16060923

Bass, J. W. (1973). Oral Antipyretic Therapy-Reply. American Journal of Diseases of Children, 126(4), 564. https://doi.org/10.1001/archpedi.1973.02110190459029

Bateman, A., Martin, M. J., O’Donovan, C., Magrane, M., Apweiler, R., Alpi, E., Antunes, R., Arganiska, J., Bely, B., Bingley, M., Bonilla, C., Britto, R., Bursteinas, B., Chavali, G., Cibrian-Uhalte, E., Da Silva, A., De Giorgi, M., Dogan, T., Fazzini, F., … Zhang, J. (2015). UniProt: A hub for protein information. Nucleic Acids Research, 43(D1), D204–D212. https://doi.org/10.1093/nar/gku989

Bawazeer, N. A., Choudhry, H., Zamzami, M. A., Abdulaal, W. H., Middleton, B., & Moselhy, S. S. (2016). Role of hesperetin in LDL-receptor expression in hepatoma HepG2 cells. BMC Complementary and Alternative Medicine, 16(1), 1–7. https://doi.org/10.1186/s12906-016-1165-2

Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranovic, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(1), D437–D451. https://doi.org/10.1093/nar/gkaa1038

Chaudhary, R., Garg, J., Shah, N., & Sumner, A. (2017). PCSK9 inhibitors: A new era of lipid lowering therapy. World Journal of Cardiology, 9(2), 76. https://doi.org/10.4330/wjc.v9.i2.76

Chu, K. A., & Yalkowsky, S. H. (2009). An interesting relationship between drug absorption and melting point. International Journal of Pharmaceutics, 373(1–2), 24–40. https://doi.org/10.1016/j.ijpharm.2009.01.026

Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 1–13. https://doi.org/10.1038/srep42717

Ding, Z., Liu, S., Wang, X., Deng, X., Fan, Y., Sun, C., Wang, Y., & Mehta, J. L. (2015). Hemodynamic shear stress via ROS modulates PCSK9 expression in human vascular endothelial and smooth muscle cells and along the mouse aorta. Antioxidants and Redox Signaling, 22(9), 760–771. https://doi.org/10.1089/ars.2014.6054

Du, F., Hui, Y., Zhang, M., Linton, M. F., Fazio, S., & Fan, D. (2011). Novel domain interaction regulates secretion of proprotein convertase subtilisin/kexin type 9 (PCSK9) protein. Journal of Biological Chemistry, 286(50), 43054–43061. https://doi.org/10.1074/jbc.M111.273474

Ferrari, R., Guardigli, G., & Ceconi, C. (2010). Secondary prevention of CAD with ACE inhibitors: A struggle between life and death of the endothelium. Cardiovascular Drugs and Therapy, 24(4), 331–339. https://doi.org/10.1007/s10557-010-6244-x

Guidi, I., Galimberti, D., Lonati, S., Novembrino, C., Bamonti, F., Tiriticco, M., Fenoglio, C., Venturelli, E., Baron, P., Bresolin, N., & Scarpini, E. (2006). Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 27(2), 262–269. https://doi.org/10.1016/j.neurobiolaging.2005.01.001

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8). https://doi.org/10.1186/1758-2946-4-17

Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2007). Molecular biology of PCSK9: its role in LDL metabolism. Trends in Biochemical Sciences, 32(2), 71–77. https://doi.org/10.1016/j.tibs.2006.12.008

Horton, J. D., Cohen, J. C., & Hobbs, H. H. (2009). PCSK9: A convertase that coordinates LDL catabolism. Journal of Lipid Research, 50(SUPPL.). https://doi.org/10.1194/jlr.R800091-JLR200

Hyock, J. K., Lagace, T. A., McNutt, M. C., Horton, J. D., & Deisenhofer, J. (2008). Molecular basis for LDL receptor recognition by PCSK9. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1820–1825. https://doi.org/10.1073/pnas.0712064105

Jaghoori, M. M., Bleijlevens, B., & Olabarriaga, S. D. (2016). 1001 Ways to run AutoDock Vina for virtual screening. Journal of Computer-Aided Molecular Design, 30(3), 237–249. https://doi.org/10.1007/s10822-016-9900-9

Joseph, L., & Robinson, J. G. (2015). Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibition and the Future of Lipid Lowering Therapy. Progress in Cardiovascular Diseases, 58(1), 19–31. https://doi.org/10.1016/j.pcad.2015.04.004

K.R., W., K.R., T., J.A., R., M.P., R., N.J., M., J.F., F., J.D., C., T.-A., N., C.D., F., S.A., T., & M.S., C. (2014). PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Science Translational Medicine, 6(258), 258ra143. http://stm.sciencemag.org/content/6/258/258ra143.full.pdf%0Ahttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed12&NEWS=N&AN=2014858109

Kanaze, F. I., Bounartzi, M. I., Georgarakis, M., & Niopas, I. (2007). Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. European Journal of Clinical Nutrition, 61(4), 472–477. https://doi.org/10.1038/sj.ejcn.1602543

Khera, A. V., Won, H. H., Peloso, G. M., Lawson, K. S., Bartz, T. M., Deng, X., van Leeuwen, E. M., Natarajan, P., Emdin, C. A., Bick, A. G., Morrison, A. C., Brody, J. A., Gupta, N., Nomura, A., Kessler, T., Duga, S., Bis, J. C., van Duijn, C. M., Cupples, L. A., … Kathiresan, S. (2016). Diagnostic Yield and Clinical Utility of Sequencing Familial Hypercholesterolemia Genes in Patients With Severe Hypercholesterolemia. In Journal of the American College of Cardiology (Vol. 67, Issue 22). Elsevier Ltd. https://doi.org/10.1016/j.jacc.2016.03.520

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971

Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: Pharmacophore search of the ZINC database. Nucleic Acids Research, 40(W1), 409–414. https://doi.org/10.1093/nar/gks378

Langer, T., & Hoffmann, R. D. (2008). Pharmacophore Modelling. Encyclopedia of Molecular Pharmacology, 960–960. https://doi.org/10.1007/978-3-540-38918-7_6434

Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289

Latimer, J., Batty, J. A., Neely, R. D. G., & Kunadian, V. (2016). PCSK9 inhibitors in the prevention of cardiovascular disease. Journal of Thrombosis and Thrombolysis, 42(3), 405–419. https://doi.org/10.1007/s11239-016-1364-1

Leinonen, R., Garcia Diez, F., Binns, D., Fleischmann, W., Lopez, R., & Apweiler, R. (2004). UniProt archive. Bioinformatics, 20(17), 3236–3237. https://doi.org/10.1093/bioinformatics/bth191

Liu, L., & Chen, J. (2008). Solubility of hesperetin in various solvents from (288.2 to 323.2) K. Journal of Chemical and Engineering Data, 53(7), 1649–1650. https://doi.org/10.1021/je800078j

Lonn, E. (2001). Antiatherosclerotic effects of ace inhibitors:Where are we now? American Journal of Cardiovascular Drugs, 1(5), 315–320. https://doi.org/10.2165/00129784-200101050-00001

Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e

Mahley, R. W. (2016). Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. Journal of Molecular Medicine, 94(7), 739–746. https://doi.org/10.1007/s00109-016-1427-y

Maxwell, K. N., Soccio, R. E., Duncan, E. M., Sehayek, E., & Breslow, J. L. (2003). Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. Journal of Lipid Research, 44(11), 2109–2119. https://doi.org/10.1194/jlr.M300203-JLR200

McNutt, M. C., Lagace, T. A., & Horton, J. D. (2007). Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. Journal of Biological Chemistry, 282(29), 20799–20803. https://doi.org/10.1074/jbc.C700095200

Petrilli, W. L., Adam, G. C., Erdmann, R. S., Abeywickrema, P., Agnani, V., Ai, X., Baysarowich, J., Byrne, N., Caldwell, J. P., Chang, W., DiNunzio, E., Feng, Z., Ford, R., Ha, S., Huang, Y., Hubbard, B., Johnston, J. M., Kavana, M., Lisnock, J. M., … Imbriglio, J. E. (2020). From Screening to Targeted Degradation: Strategies for the Discovery and Optimization of Small Molecule Ligands for PCSK9. Cell Chemical Biology, 27(1), 32-40.e3. https://doi.org/10.1016/j.chembiol.2019.10.002

Pines, A., & Fisman, E. Z. (2003). ACE inhibition with moexipril: A review of potential effects beyond blood pressure control. American Journal of Cardiovascular Drugs, 3(5), 351–360. https://doi.org/10.2165/00129784-200303050-00006

Pitt, B. (1995). Potential role of angiotensin converting enzyme inhibitors in the treatment of atherosclerosis. European Heart Journal, 16(SUPPL. K), 49–54. https://doi.org/10.1093/eurheartj/16.suppl_k.49

RA, L., & MB, S. (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.

Ramharack, P., & Soliman, M. E. S. (2018). Bioinformatics-based tools in drug discovery: the cartography from single gene to integrative biological networks. Drug Discovery Today, 23(9), 1658–1665. https://doi.org/10.1016/j.drudis.2018.05.041

Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008). Deterministic pharmacophore detection via multiple flexible alignment of drug-like molecules. Journal of Computational Biology, 15(7), 737–754. https://doi.org/10.1089/cmb.2007.0130

Seidah, N. G., Abifadel, M., Prost, S., Boileau, C., & Prat, A. (2017). The proprotein convertases in hypercholesterolemia and cardiovascular diseases: Emphasis on proprotein convertase subtilisin/Kexin 9. Pharmacological Reviews, 69(1), 33–52. https://doi.org/10.1124/pr.116.012989

Semenova, A. E., Sergienko, I. V., García-Giustiniani, D., Monserrat, L., Popova, A. B., Nozadze, D. N., & Ezhov, M. V. (2020). Verification of underlying genetic cause in a cohort of russian patients with familial hypercholesterolemia using targeted next generation sequencing. Journal of Cardiovascular Development and Disease, 7(2). https://doi.org/10.3390/JCDD7020016

Shelness, G. S., & Sellers, J. A. (2001). Very-low-density lipoprotein assembly and secretion. Current Opinion in Lipidology, 12(2), 151–157. https://doi.org/10.1097/00041433-200104000-00008

Sterling, T., & Irwin, J. J. (2015). ZINC 15 - Ligand Discovery for Everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

Ukuku, D. O., Bari, L., & Kawamoto, S. (2012). Hydrogen Peroxide. Decontamination of Fresh and Minimally Processed Produce, 2, 197–214. https://doi.org/10.1002/9781118229187.ch11

Urban, D., Pöss, J., Böhm, M., & Laufs, U. (2013). Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. Journal of the American College of Cardiology, 62(16), 1401–1408. https://doi.org/10.1016/j.jacc.2013.07.056

Wan, Q., Liu, Z., Yang, Y., & Cui, X. (2018). Suppressive effects of berberine on atherosclerosis via downregulating visfatin expression and attenuating visfatin-induced endothelial dysfunction. International Journal of Molecular Medicine, 41(4), 1939–1948. https://doi.org/10.3892/ijmm.2018.3440

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427

Wei, W., Cherukupalli, S., Jing, L., Liu, X., & Zhan, P. (2020). Fsp3: A new parameter for drug-likeness. Drug Discovery Today, 25(10), 1839–1845. https://doi.org/10.1016/j.drudis.2020.07.017

Wishart, D. S. (2005). Bioinformatics in drug development and assessment. In Drug Metabolism Reviews (Vol. 37, Issue 2). https://doi.org/10.1081/DMR-200055225

Xu, S., Luo, S., Zhu, Z., & Xu, J. (2019). Small molecules as inhibitors of PCSK9: Current status and future challenges. European Journal of Medicinal Chemistry, 162, 212–233. https://doi.org/10.1016/j.ejmech.2018.11.011

Yamada, Y., Gohda, S., Abe, K., Togo, T., Shimano, N., Sasaki, T., Tanaka, H., Ono, H., Ohba, T., Kubo, S., Ohkubo, T., & Sato, S. (2017). Carbon materials with controlled edge structures. Carbon, 122(October 1995), 694–701. https://doi.org/10.1016/j.carbon.2017.07.012

Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). AdmetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics, 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707

Younas, F., Aslam, B., Muhammad, F., Mohsin, M., Raza, A., Faisal, M. N., Shamshud-Ul-Hassan, & Majeed, W. (2017). Haematopoietic effects of angelica sinensis root cap polysaccharides against lisinopril-induced anaemia in albino rats. Pharmaceutical Biology, 55(1), 108–113. https://doi.org/10.1080/13880209.2016.1230635

Zhang, D., Wang, Y., Yi, M., Zhang, S., & Wu, Y. (2020). The Peroxisome Proliferator-Activated Receptor γ Agonist Pioglitazone Protects Vascular Endothelial Function in Hypercholesterolemic Rats by Inhibiting Myeloperoxidase. Cardiology Research and Practice, 2020. https://doi.org/10.1155/2020/1845969

Zhao, P. J., Ban, M. R., Iacocca, M. A., McIntyre, A. D., Wang, J., & Hegele, R. A. (2019). Genetic Determinants of Myocardial Infarction Risk in Familial Hypercholesterolemia. CJC Open, 1(5), 225–230. https://doi.org/10.1016/j.cjco.2019.06.001




DOI: https://doi.org/10.14421/biomedich.2022.112.119-131

Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Sabarinathan Sethuramalingam, Revathy Leena Ravi, Janet Rani Rajiah



Biology, Medicine, & Natural Product Chemistry
ISSN 2089-6514 (paper) - ISSN 2540-9328 (online)
Published by Sunan Kalijaga State Islamic University & Society for Indonesian Biodiversity.

CC BY NC
This work is licensed under a CC BY-NC