In Silico Exploration of Bioactive Compounds from Dracaena cochinchinensis as Potential Inhibitors of Streptococcus pyogenes Inosine-5'-Monophosphate Dehydrogenase (IMPDH)
Abstract
The emergence of multidrug-resistant Streptococcus pyogenes presents a significant global health threat, demanding the urgent discovery of novel antibacterial agents. This study utilized a comprehensive in silico framework to investigate 17 compounds from the traditional medicinal plant Dracaena cochinchinensis as potential inhibitors of Inosine-5'-monophosphate dehydrogenase (IMPDH), a validated antimicrobial drug target. The workflow included predictive modeling of physicochemical properties, pharmacokinetics (ADME), toxicity profiles, and molecular docking simulations to elucidate binding affinities and interaction patterns within the enzyme's active site. Physicochemical analysis revealed that 11 of the 17 compounds exhibited drug-like properties. Molecular docking identified several ligands with high binding affinities, notably Isopimaric acid (-8.2 kcal/mol) and Cochinchinenene D (-8.1 kcal/mol), whose stability was mediated by interactions with key catalytic residues. ADMET predictions indicated that most compounds possess favorable pharmacokinetic profiles. Crucially, Isopimaric acid demonstrated a superior safety profile, with a high LD50 (5000 mg/kg), no predicted mutagenicity, and no risk of drug-induced liver injury (DILI). This computational investigation successfully identified Isopimaric acid as a standout candidate, and its combination of strong target affinity and a favorable ADMET profile positions it as a promising scaffold for the development of novel antibacterial agents against S. pyogenes. These findings provide a strong impetus for experimental validation.
Keywords
Full Text:
PDFReferences
Agu, P. C., Afiukwa, C. A., Orji, O. U., Ezeh, E. M., Ofoke, I. H., Ogbu, C. O., Ugwuja, E. I., & Aja, P. M. (2023). Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Scientific Reports 2023 13:1, 13(1), 1–18. https://doi.org/10.1038/s41598-023-40160-2
Ramanujan, K. (2020, June 3). Bacterial enzyme structure opens door for new antibiotics. Cornell Chronicle. https://news.cornell.edu/stories/2020/06/bacterial-enzyme-structure-opens-door-new-antibiotics
Braun-Sand, S. B., & Peetz, M. (2010). Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Medicinal Chemistry, 2(1), 81–92. https://doi.org/10.4155/FMC.09.147
Buchwald, P. (2019). A receptor model with binding affinity, activation efficacy, and signal amplification parameters for complex fractional response versus occupancy data. Frontiers in Pharmacology, 10(JUN), 441435. https://doi.org/10.3389/FPHAR.2019.00605/BIBTEX
Cattoir, V. (2022). Mechanisms of Streptococcus pyogenes Antibiotic Resistance. Streptococcus Pyogenes: Basic Biology to Clinical Manifestations. https://www.ncbi.nlm.nih.gov/books/NBK587098/
Egbert, M., Whitty, A., Keserü, G. M., & Vajda, S. (2019). Why some targets benefit from beyond rule of five drugs. Journal of Medicinal Chemistry, 62(22), 10005. https://doi.org/10.1021/ACS.JMEDCHEM.8B01732
Gupta, D., & Gupta, R. K. (2011). Bioprotective properties of Dragon’s blood resin: in vitro evaluation of antioxidant activity and antimicrobial activity. BMC Complementary and Alternative Medicine, 11. https://doi.org/10.1186/1472-6882-11-13
He, T. C., Wang, D. W., Zheng, S. M., Yan, Y. M., Jiao, Y. Bin, Cheng, Y. X., & Wang, F. (2021). Antifungal and wound healing promotive compounds from the resins of Dracaena cochinchinensis. Fitoterapia, 151, 104904. https://doi.org/10.1016/J.FITOTE.2021.104904
Hughes, J. P., Rees, S. S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/J.1476-5381.2010.01127.X
Kanwal, S., & Vaitla, P. (2023). Streptococcus Pyogenes. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK554528/
Kebede, D., Admas, A., & Mekonnen, D. (2021). Prevalence and antibiotics susceptibility profiles of Streptococcus pyogenes among pediatric patients with acute pharyngitis at Felege Hiwot Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Microbiology, 21(1), 1–10. https://doi.org/10.1186/S12866-021-02196-0/TABLES/3
Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715. https://doi.org/10.1038/NRD1470
Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6(11), 881–890. https://doi.org/10.1038/NRD2445;KWRD
Lionta, E., Spyrou, G., Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
Modi, G., Marqus, G. M., Vippila, M. R., Gollapalli, D. R., Kim, Y., Manna, A. C., Chacko, S., Maltseva, N., Wang, X., Cullinane, R. T., Zhang, Y., Kotler, J. L. M., Kuzmic, P., Zhang, M., Lawson, A. P., Joachimiak, A., Cheung, A., Snider, B. B., Rothstein, D. M., … Hedstrom, L. (2021). The enzymatic activity of inosine 5’-monophosphate dehydrogenase may not be a vulnerable target for Staphylococcus aureus infections. ACS Infectious Diseases, 7(11), 3062. https://doi.org/10.1021/ACSINFECDIS.1C00342
Monteiro, N. R. C., Simões, C. J. V., Ávila, H. V., Abbasi, M., Oliveira, J. L., & Arrais, J. P. (2022). Explainable deep drug–target representations for binding affinity prediction. BMC Bioinformatics, 23(1), 1–24. https://doi.org/10.1186/S12859-022-04767-Y/FIGURES/10
Nawan, Isnaeni, & Wasito, E. B. (2020). Antimicrobial Activity of Streptomyces sp. Isolated from Acidic Peatlands against Extended Spectrum Beta Lactamase (ESBL) producing Escherichia coli. Research Journal of Pharmacy and Technology, 13(3), 1121–1126. https://doi.org/10.5958/0974-360X.2020.00206.1
Nawan, N., & Handayani, Septi. (2021). Molecular identification of Streptomyces sp. isolated from peat land of Palangka Raya, Kalimantan Tengah using 16S rRNA gene sequences analysis. Research Journal of Pharmacy and Technology, 6639–6644. https://doi.org/10.52711/0974-360X.2021.01147
Nhlapho, S., Nyathi, M., Ngwenya, B., Dube, T., Telukdarie, A., Munien, I., Vermeulen, A., & Chude-Okonkwo, U. (2024). Druggability of Pharmaceutical Compounds Using Lipinski Rules with Machine Learning. Sciences of Pharmacy, 3(4), 177–192. https://doi.org/10.58920/SCIPHAR0304264
Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/ACS.JMEDCHEM.5B00104/SUPPL_FILE/JM5B00104_SI_001.PDF
Ünübol, N., Caglayan, N., Cebeci, S., Be?li, Y., Sancak, B., Uyar, N. Y., Ahrabi, S. S., Alebouyeh, M., & Kocagöz, T. (2025). Antimicrobial resistance and epidemiological patterns of Streptococcus pyogenes in Türkiye. Journal of Infection and Public Health, 18(2), 102633. https://doi.org/10.1016/J.JIPH.2024.102633
van de Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. https://doi.org/10.1038/NRD1032
Waring, M. J., Arrowsmith, J., Leach, A. R., Leeson, P. D., Mandrell, S., Owen, R. M., Pairaudeau, G., Pennie, W. D., Pickett, S. D., Wang, J., Wallace, O., & Weir, A. (2015). An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nature Reviews. Drug Discovery, 14(7), 475–486. https://doi.org/10.1038/NRD4609
DOI: https://doi.org/10.14421/biomedich.2025.142.1265-1271
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Septi Handayani, Nawan, Agnes Toemon
Biology, Medicine, & Natural Product Chemistry |




